

SUBSURFACE INVESTIGATION

STATE JOB NO.		040792		
FEDERAL AID PROJECT NO.		NHPP-0065(5	56)	
	HWY	7. 45 STRS. & APPRS. (S)		
STATE HIGHWAY	45	SECTION	1	
IN		SEBASTIAN		COUNTY

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

ARDOT.gov | IDriveArkansas.com | Scott E. Bennett, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

June 3, 2019

TO: Mr. Trinity Smith, Engineer of Roadway Design

SUBJECT: Job No. 040792 Hwy. 45 Strs. & Apprs. (S) Route 45 Section 1 Sebastian County

Based on soil information from projects in the surrounding area, an estimated R-Value of 11 is appropriate for pavement design.

Listed below is the additional information requested for use in developing the plans:

Asphalt Concrete Hot Mix

Туре	Asphalt Cement %	Mineral Aggregate %
Surface Course	6.1	93.9
Binder Course	4.2	95.8
Base Course	3.7	96.3

A. Am Michael C. Benson Materials Engineer

MCB:pt:bjj

Attachment

cc: State Constr. Eng. – Master File Copy District 4 Engineer System Information and Research Div. G. C. File

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

September 8, 2020

TO: Mr. Trinity Smith, Engineer of Roadway Design

SUBJECT: Job No. 040792 Hwy. 45 Strs. & Apprs. (S) Route 45 Section 1 Sebastian County

Attached is the requested soil survey, strength data and Resilient Modulus test results for the above referenced job. The project consists of replacing 3 bridges on Highway 45. Samples were obtained in the existing travel lanes and ditch line. There were no paved shoulders within the project limits.

The subgrade soils consist primarily of sandy clay and highly weathered shale. The subgrade soils are expected to provide a stable working platform with conventional processing if the weather is favorable during construction.

The maximum embankment height is approximately 15 feet. All soft unstable organic material should be undercut, anticipated to be no more than two feet, prior to embankment construction. The embankment may be constructed with locally available unspecified material. The proposed embankment slopes are acceptable as shown.

The proposed cut slopes are acceptable as shown in the currently available cross sections.

Listed below is the additional information requested for use in developing the plans:

- 1. The Qualified Products List (QPL) indicates that Aggregate Base Course (Class CL-7) is available from commercial producers in the vicinity of Greenwood.
- 2. Asphalt Concrete Hot Mix

Туре	Asphalt Cement %	Mineral Aggregate %
Surface Course	6.1	93.9
Binder Course	4.2	95.8
Base Course	3.7	96.3

Jonathan A. Annable

Materials Engineer

JAA:pt:bjj

- Attachment
- cc: State Constr. Eng. Master File Copy District 4 Engineer System Information and Research Div. G. C. File

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT - LITTLE ROCK, ARKANSAS MATERIALS DIVISION JONATHAN A. ANNABLE, MATERIALS ENGINEER *** SOIL SURVEY STRENGTH TEST REPORT *** DATE - 09/01/2020 SEQUENCE NO. - 1 MATERIAL CODE - SSRV JOB NUMBER - 040792 SPEC. YEAR - 2014 SUPPLIER ID. - 1 COUNTY/STATE - 65 DISTRICT NO. - 04 JOB NAME - HWY. 45 STRS. & APPRS. (S) STATION LIMITS R-VALUE AT 240 psi * BEGIN JOB - END JOB LESS THAN 5

RESII	IENT MODULUS	
STA.	107+00	11875
STA.	307+00	10,591
STA.	511+00	10532

REMARKS -

AASHTO TESTS : T190

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS **RECOMPACTED SAMPLES**

Job No. Date Sampled: Date Tested: Name of Project:	040792 7/30/2020 August 19, 2020 HWY. 45 STRS. & APPRS. (S)	Material Code Station No.: Location:	SSRVPS 107+00 20' RT
County: Sampled By: Lab No.: Sample ID: LATITUDE:	Code: 65 Name: SEBASTIAN FRAZIER / JORDAN 20201541 RV335	Depth: AASHTO Class: Material Type (1 or 2) LONGITUDE:	0-5 A-2-6 (1) 2
1. Testing Inform	nation:		
	Preconditioning - Permanent Strain > 5% Testing - Permanent Strain > 5% (Y=Yes of Number of Load Sequences Completed (0	or N=No)	N N 15
2. Specimen Info	ormation:		
	Specimen Diameter (in): Top Middle Bottom Average		3.96 3.96 3.95
	Membrane Thickness (in):		3.96
	Height of Specimen, Cap and Base (in):		0.01 8.02
	Height of Cap and Base (in):		0.00
	Initial Length, Lo (in):		8.02
	Initial Area, Ao (sq. in):		12.22
	Initial Volume, AoLo (cu. in):		98.01
2 Coil Crossimon	Mainte		
3. Soil Specimen	Weight of Wet Soil Used (g):		
	Weight of Wet Soli Osed (g).		3139.20
4. Soil Properties	:		
	Optimum Moisture Content (%):		14.9
	Maximum Dry Density (pcf):		110.5
	95% of MDD (pcf):		105.0
	In-Situ Moisture Content (%):		N/A
5. Specimen Prop	oortios.		
5. Opecimen Prop	Wet Weight (g):		0400.00
	Compaction Moisture content (%):		3139.20
	Compaction Wet Density (pcf):		14.6 122.04
	Compaction Dry Density (pcf):		106.49
	Moisture Content After Mr Test (%):		14.6
6 Quick Cheer To			
o. Quick Shear Te	st (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Modu	lus, Mr:	17208(Sc)^-0.22503(\$3)^0.19125
8. Comments			
-			
9. Tested By:	GW	Date: August 19, 2020	

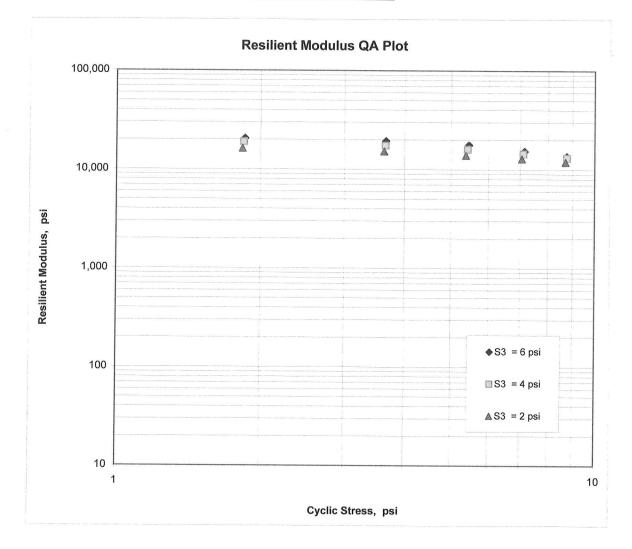
AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Material CodeSSRVPSStation No.:107+00Location:20' RTDepth:0-5AASHTO Class:A-2-6 (1)Material Type (1 or 2):2LONGITUDE:0-5
Material Code Station No.: Location: Depth: AASHTO Class: Material Type (1 LONGITUDE:
SEBASTIAN
040792 7/30/2020 August 19, 2020 HWY. 45 STRS. & APPRS. (S) Code: 65 Name: FRAZIER / JORDAN 20201541 RV335
Job No. Date Sampled: Date Tested: Name of Project: County: Sampled By: Lab No.: Sample ID: LATITUDE:

		Actual	Actual	Actual	Actual	Actual	Average	Resilient	Resilient
m Applied Applied		A.	Applied	Applied	Applied	Applied	Recov Def.	Strain	Modulus
Max. Axial Cyclic Load		-	Contact	Max.	Cyclic	Contact	LVDT 1		
Stress Load			Load	Axial	Stress	Stress	and 2		
				Stress					
S _{cyclic} P _{max} P _{cyclic}	P _{cyclic}		Pcontact	S _{max}	S _{cyclic}	Scontact	Havg	చ్	Mr
psi lbs lbs	lbs		lbs	psi	psi	psi	.Ľ	in/in	psi
2.0 25.4 22.6	22.6		2.8	2.1	1.9	0.2	0.00073	0.00009	20,485
4.0 47.5 44.7	44.7		2.8	3.9	3.7	0.2	0.00152	0.00019	19,323
6.0 70.2 66.6	9.99		3.6	5.7	5.4	0.3	0.00247	0.00031	17,728
8.0 93.3 87.3	87.3		6.0	7.6	7.1	0.5	0.00374	0.00047	15,326
10.0 115.4 106.9	106.9		8.5	9.4	8.7	0.7	0.00515	0.00064	13,625
2.0 25.3 22.5	22.5		2.8	2.1	1.8	0.2	0.00078	0.00010	18,932
4.0 47.3 44.6	44.6		2.7	3.9	3.6	0.2	0.00168	0.00021	17,443
6.0 69.0 66.2	66.2		2.8	5.6	5.4	0.2	0.00272	0.00034	15,986
8.0 91.9 86.8	86.8		5.2	7.5	7.1	0.4	0.00394	0.00049	14,440
10.0 114.5 106.9	106.9		7.6	9.4	8.7	0.6	0.00535	0.00067	13,109
2.0 25.1 22.4	22.4		2.8	2.1	1.8	0.2	0.00091	0.00011	16,189
4.0 47.1 44.3	44.3		2.7	3.9	3.6	0.2	0.00192	0.00024	15,178
6.0 68.4 65.6	65.6		2.8	5.6	5.4	0.2	0.00310	0.00039	13,877
8.0 90.4 86.2	86.2		4.3	7.4	7.1	0.3	0.00441	0.00055	12,815
10.0 112.7 106.1	106.1		6.6	9.2	8.7	0.5	0.00587	0.00073	11,875

August 19, 2020

DATE DATE


TESTED BY

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	040792		Material Code SSRVPS
Date Sampled:	7/30/2020		Station No.: 107+00
Date Tested:	August 19, 2020		Location: 20' RT
Name of Project:	HWY. 45 STRS. & APPRS. (S)	
County:	Code: 65 Name:	SEBASTIAN	
Sampled By:	FRAZIER / JORDAN		Depth: 0-5
Lab No.:	20201541		AASHTO Class: A-2-6 (1)
Sample ID:	RV335	Materi	al Type (1 or 2): 2
LATITUDE:			LONGITUDE:

 $M_R = K1 (S_C)^{K_2} (S_3)^{K_5}$

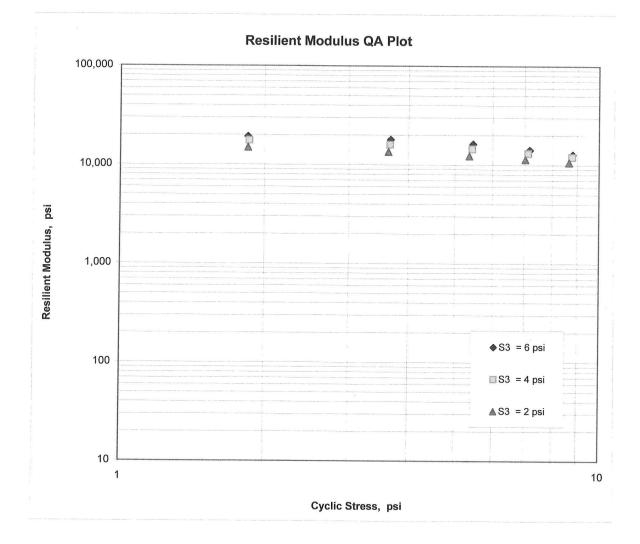
K1 =	17,208
K2 =	-0.22503
	0.19125
$R^2 =$	0.92

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Job No. Date Sampled: Date Tested: Name of Project:	040792 7/30/2020 August 19, 2020 HWY. 45 STRS. & APPRS. (S)	Material Code Station No.: Location:	SSRVPS 307+00 20' RT
County: Sampled By: Lab No.: Sample ID: LATITUDE:	Code: 65 Name: SEBASTIAN FRAZIER / JORDAN 20201542 RV336	Depth: AASHTO Class: Material Type (1 or LONGITUDE:	0-5 A-6 (7) 2): 2
1. Testing Inform			
	Preconditioning - Permanent Strain > 5% (Y Testing - Permanent Strain > 5% (Y=Yes or N Number of Load Sequences Completed (0-18	N=No)	N N 15
2. Specimen Info	ormation:		
3. Soil Specimen 4. Soil Properties	Specimen Diameter (in): Top Middle Bottom Average Membrane Thickness (in): Height of Specimen, Cap and Base (in): Height of Cap and Base (in): Initial Length, Lo (in): Initial Area, Ao (sq. in): Initial Volume, AoLo (cu. in): Weight: Weight of Wet Soil Used (g): : Optimum Moisture Content (%):		3.95 3.96 3.95 3.95 0.01 8.02 0.00 8.02 12.20 97.85 3148.60 14.4
	Maximum Dry Density (pcf): 95% of MDD (pcf): In-Situ Moisture Content (%):		111.7 106.1 N/A
			N/A
5. Specimen Pro	Derties: Wet Weight (g): Compaction Moisture content (%): Compaction Wet Density (pcf): Compaction Dry Density (pcf): Moisture Content After Mr Test (%):		3148.60 14.3 122.61 107.27 14.2
6. Quick Shear Te	est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Modu	lus, Mr:	15350(5	Sc)^-0.23792(S3)^0.22445
8. Comments			
9. Tested By:	GW D	ate: <u>August 19, 2020</u>	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Material CodeSSRVPSStation No.:307+00Location:20' RT	Depth: 0-5 AASHTO Class: A-6 (7) Material Type (1 or 2): 2 LONGITUDE:
	SEBASTIAN
APPRS. (S)	N ame:
040792 7/30/2020 August 19, 2020 HWY. 45 STRS. & APPRS. (S)	Code: 65 FRAZIER / JORDAN 20201542 RV336
Job No. Date Sampled: Date Tested: Name of Project:	County: Sampled By: Lab No.: Sample ID: LATITUDE:


Applied Contact Recov Def. LVDT 1 Strain Contact LVDT 1 strain Stress and 2 strain Stress and 2 strain Scontact Havg strain Scontact Havg strain 0.2 0.00077 0.00010 0.2 0.000164 0.00020 0.3 0.000554 0.00051 0.7 0.000554 0.00053 0.7 0.000555 0.00073 0.2 0.000355 0.00073 0.2 0.000355 0.00073 0.2 0.000365 0.00073 0.2 0.000365 0.00073 0.2 0.000385 0.00073 0.2 0.000385 0.00073 0.2 0.000385 0.00073 0.2 0.000399 0.00073 0.2 0.000398 0.00073 0.2 0.000398 0.00073 0.2 0.000348 0.000435 0.		Chamber	Nominal	Actual	Actual	Actual	Actual	Actual	Actual	Average	Resilient	Resilient
Fressure Axial Max. Axial Max. Axial Max. Axial Max. Axial Cyclic Load Contact Lud Axial Stress Stress and Z Axial Stress and Z Axial Stress Stress and Z Axial Stress Stress Stress and Z Axial Stress Stress and Z Axial Stress Stress and Z Axial Stress	e K	Confining	Maximum	Applied	Applied	Applied	Applied	Applied	Applied	Recov Def.	Strain	Modulus
ON Stress psi psi Load Axial Stress Stress and 2 0 S ₃ S ₉₀₀ P _{max} P ₉₀₁₀ P ₉₀₁₀ Stress Stress and 2 1 psi psi psi psi psi psi in infin 1 6.0 2.0 2.53 2.25 2.8 3.3 0.00 0.00007 0.00010 2 6.0 4.0 2.53 2.55 2.8 3.3 0.02 0.00051 0.00010 3 6.0 10.0 1158 1074 84 9.5 6.0 0.00051 0.00051 5 4.0 2.0 2.7 2.7 2.7 2.1 1.9 0.2 0.00051 0.00051 7 4.0 8.0 9.1 7.4 8.8 0.7 0.00050 0.00051 7 4.0 2.0 2.7 2.7 2.1 1.9 0.2 0.00014 0.00051 <td< td=""><td>PARAMETER</td><td>Pressure</td><td>Axial</td><td>Max. Axial</td><td>Cyclic Load</td><td>Contact</td><td>Max.</td><td>Cyclic</td><td>Contact</td><td>LVDT 1</td><td></td><td></td></td<>	PARAMETER	Pressure	Axial	Max. Axial	Cyclic Load	Contact	Max.	Cyclic	Contact	LVDT 1		
ON S3 Squite Pares Stress 1 bs			Stress	Load		Load	Axial	Stress	Stress	and 2		
ON S3 Social psi Pmax psi Popelle psi Popelle psi Popelle psi Popelle psi Pmay psi Pmay psi <	- A straight of the first of the straight o						Stress					
psi psi psi psi in in/in 1 6.0 2.0 25.3 22.5 2.8 2.1 1.8 0.2 0.00077 0.00010 2 6.0 4.0 47.5 44.7 2.8 3.9 3.7 0.2 0.00077 0.00010 3 6.0 6.0 7.01 66.5 3.6 5.7 5.5 0.3 0.00569 0.00034 4 6.0 10.0 115.8 107.4 8.4 9.5 8.8 0.7 0.00569 0.00034 6 4.0 2.0 15.8 6.0 7.7 7.2 0.5 0.00354 0.00034 7 4.0 10.0 115.8 107.4 8.4 9.5 0.7 0.00356 0.00011 7 4.0 5.0 5.4 2.7 2.1 1.9 0.7 0.0035 0.00031 7 4.0 5.1 1.0 1.7 2.7 2.1	DESIGNATION	ŝ	S _{cyclic}	P max	P _{cyclic}	Pcontact	S _{max}	S _{cyclic}	Scontact	Havo	ພ້	M
1 6.0 2.0 25.3 22.5 2.8 2.1 1.8 0.2 0.00077 0.00077 0.00070 2 6.0 4.0 47.5 44.7 2.8 3.9 3.7 0.2 0.00164 0.00020 3 6.0 6.0 70.1 66.5 3.6 5.7 5.5 0.3 0.00269 0.00034 4 6.0 8.0 93.5 87.5 6.0 7.7 7.2 0.5 0.00407 0.00054 5 6.0 10.0 115.8 107.4 8.4 9.5 8.8 0.7 0.00554 0.00054 7 4.0 4.0 4.0 4.6 2.7 2.1 1.9 0.2 0.00184 0.00053 6 4.0 2.0 54 2.7 2.1 1.9 0.2 0.00184 0.00053 7 4.0 8.0 91.9 86.8 5.1 7.5 7.1 0.4 0.00354 0.00054 11 2.0 10.0 114.6 107.1 7.5 7.1 <td>UNIT</td> <td>psi</td> <td>psi</td> <td>lbs</td> <td>lbs</td> <td>lbs</td> <td>psi</td> <td>psi</td> <td>psi</td> <td>.E</td> <td>in/in</td> <td>psi</td>	UNIT	psi	psi	lbs	lbs	lbs	psi	psi	psi	.E	in/in	psi
2 6.0 4.0 4.7.5 4.4.7 2.8 3.9 3.7 0.2 0.00164 0.000269 0.00024 0.0002	Sequence 1	6.0	2.0	25.3	22.5	2.8	2.1	1.8	0.2	0.00077	0.00010	19,170
3 6.0 7.0 7.0.1 66.5 3.6 5.7 5.5 0.3 0.00269 0.00031 4 6.0 8.0 93.5 87.5 6.0 7.7 7.2 0.5 0.00407 0.00051 5 6.0 10.0 115.8 107.4 8.4 9.5 8.8 0.7 0.00554 0.00051 6 4.0 2.0 25.4 2.7 2.7 2.1 1.9 0.2 0.00165 0.00051 7 4.0 2.0 26.6 2.7 2.1 1.9 0.2 0.0016 0.0011 7 4.0 4.0 4.0 4.6 2.7 3.9 3.7 0.2 0.0013 0.0023 8 4.0 6.0 68.9 66.2 2.7 3.9 3.7 0.2 0.0033 0.0033 11 2.0 14.6 7.5 7.1 1.8 0.2 0.0033 0.0003 11 2.0	Sequence 2	6.0	4.0	47.5	44.7	2.8	3.9	3.7	0.2	0.00164	0.00020	17,940
4 6.0 8.0 93.5 87.5 6.0 7.7 7.2 0.5 0.00407 0.00554 0.00657 5 6.0 10.0 115.8 107.4 8.4 9.5 8.8 0.7 0.00554 0.00059 7 4.0 2.0 2.64 2.7 2.7 2.1 1.9 0.2 0.0013 0.0013 7 4.0 2.0 2.0 2.64 2.7 2.7 3.9 3.7 0.2 0.0013 0.0013 8 4.0 6.0 6.0 68.3 66.2 2.7 3.9 3.7 0.2 0.0013 0.0033 8 4.0 6.0 68.3 66.2 2.7 5.6 5.4 0.2 0.0033 0.0033 9 4.0 8.0 67 7.5 9.4 8.8 0.6 0.0033 0.0033 10 4.0 10.0 114.6 107.1 7.5 2.1 1.8 0.2 0.0033 0.00033 11 2.0 2.0 2.0 4.3	Sequence 3	6.0	6.0	70.1	66.5	3.6	5.7	5.5	0.3	0.00269	0.00034	16,232
5 6.0 10.0 115.8 107.4 8.4 9.5 8.8 0.7 0.00554 0.00069 7 4.0 2.0 2.64 2.27 2.7 2.1 1.9 0.2 0.00355 0.00011 7 4.0 2.0 2.64 2.27 2.7 2.1 1.9 0.2 0.00355 0.00011 8 4.0 5.0 5.6 5.4 0.2 0.00356 0.00037 9 4.0 6.0 68.9 66.2 2.7 5.6 5.4 0.2 0.00330 0.00037 9 4.0 10.0 114.6 107.1 7.5 9.4 8.8 0.6 0.00336 0.00073 10 4.0 10.1 114.6 107.1 7.5 9.4 8.8 0.6 0.00336 0.00073 11 2.0 2.0 2.0 3.7 2.1 1.8 0.2 0.00336 0.00073 12 2.0	Sequence 4	6.0	8.0	93.5	87.5	6.0	7.7	7.2	0.5	0.00407	0.00051	14,133
6 4.0 2.0 25.4 2.7 2.7 2.1 1.9 0.2 0.00085 0.00011 7 4.0 4.0 47.3 44.6 2.7 3.9 3.7 0.2 0.00085 0.00013 8 4.0 6.0 68.9 66.2 2.7 3.9 3.7 0.2 0.00184 0.00037 9 4.0 6.0 68.9 66.2 2.7 5.6 5.4 0.2 0.00136 0.00037 9 4.0 8.0 91.9 86.8 5.1 7.5 7.1 0.4 0.00435 0.00033 11 2.0 2.0 14.6 7.5 9.4 8.8 0.6 0.00545 0.00073 12 2.0 4.0 10.7 7.5 2.1 1.8 0.2 0.0039 0.00073 13 2.0 6.0 6.0 6.1 44.3 2.7 3.9 3.6 0.2 0.00348 0.00031	Sequence 5	6.0	10.0	115.8	107.4	8.4	9.5	8.8	0.7	0.00554	0.00069	12,738
7 4.0 4.0 4.0 4.1 2.7 3.9 3.7 0.2 0.00184 0.00023 8 4.0 6.0 68.9 66.2 2.7 5.6 5.4 0.2 0.00306 0.00037 9 4.0 8.0 91.9 86.8 5.1 7.5 7.1 0.4 0.00356 0.00054 10 4.0 10.0 114.6 107.1 7.5 9.4 8.8 0.6 0.00356 0.00073 11 2.0 2.0 2.0 2.7 3.9 3.6 0.5 0.00054 0.00073 12 2.0 4.0 4.7 7.5 2.1 1.8 0.2 0.0036 0.00073 13 2.0 4.0 4.4 3.2 2.7 3.9 3.6 0.2 0.0034 0.00073 14 2.0 8.0 6.6 6.7 9.2 8.7 0.6 0.00348 0.00043 15 2.0 <td>Sequence 6</td> <td>4.0</td> <td>2.0</td> <td>25.4</td> <td>22.7</td> <td>2.7</td> <td>2.1</td> <td>1.9</td> <td>0.2</td> <td>0.00085</td> <td>0.00011</td> <td>17,571</td>	Sequence 6	4.0	2.0	25.4	22.7	2.7	2.1	1.9	0.2	0.00085	0.00011	17,571
8 4.0 6.0 68.9 66.2 2.7 5.6 5.4 0.2 0.00300 0.00037 9 4.0 8.0 91.9 86.8 5.1 7.5 7.1 0.4 0.00435 0.00054 10 4.0 10.0 114.6 107.1 7.5 9.4 8.8 0.6 0.00435 0.00054 11 2.0 2.0 25.2 22.5 2.7 2.1 1.8 0.2 0.0039 0.00073 11 2.0 2.0 4.0 4.1 7.5 9.4 8.8 0.6 0.0039 0.00073 12 2.0 2.0 2.1 2.1 1.8 0.2 0.0039 0.00073 13 2.0 6.0 68.1 65.3 2.8 5.6 5.3 0.2 0.00346 0.00043 14 2.0 8.0 90.0 6.1 105.6 6.1 0.6 0.00555 0.00043 15 <td< td=""><td>Sequence 7</td><td>4.0</td><td>4.0</td><td>47.3</td><td>44.6</td><td>2.7</td><td>3.9</td><td>3.7</td><td>0.2</td><td>0.00184</td><td>0.00023</td><td>15,961</td></td<>	Sequence 7	4.0	4.0	47.3	44.6	2.7	3.9	3.7	0.2	0.00184	0.00023	15,961
9 4.0 8.0 91.9 86.8 5.1 7.5 7.1 0.4 0.00435 0.00054 10 4.0 10.0 114.6 107.1 7.5 9.4 8.8 0.6 0.00585 0.00073 11 2.0 2.0 2.0 25.2 22.5 2.7 2.1 1.8 0.2 0.00099 0.00073 12 2.0 4.0 47.0 44.3 2.7 3.9 3.6 0.2 0.00216 0.00027 13 2.0 6.0 68.1 65.3 2.8 5.6 5.3 0.2 0.00216 0.00023 14 2.0 8.0 66.0 65.3 2.8 5.6 5.3 0.2 0.00216 0.00023 14 2.0 8.0 6.0 6.7 9.2 8.7 0.6 0.00436 0.00033 15 2.0 10.0 112.3 105.6 6.7 9.2 8.7 0.6 0.00655	Sequence 8	4.0	6.0	68.9	66.2	2.7	5.6	5.4	0.2	0.00300	0.00037	14,506
10 4.0 10.0 114.6 107.1 7.5 9.4 8.8 0.6 0.00585 0.00073 11 2.0 2.0 2.5.2 22.5 2.7 2.1 1.8 0.2 0.00099 0.00012 12 2.0 4.0 47.0 44.3 2.7 3.9 3.6 0.2 0.0016 0.00027 13 2.0 6.0 68.1 65.3 2.8 5.6 5.3 0.2 0.00348 0.00043 14 2.0 8.0 90.0 85.6 4.3 7.4 7.0 0.4 0.00436 0.00043 15 2.0 10.0 112.3 105.6 6.7 9.2 8.7 0.6 0.00655 0.00062 15 2.0 10.0 112.3 105.6 6.7 9.2 8.7 0.6 0.00655 0.00062 15 2.0 10.0 112.3 105.6 6.7 9.2 8.7 0.6 0.00655 0.00062 15 2.0 10.0 112.3 105.6 6.7	Sequence 9	4.0	8.0	91.9	86.8	5.1	7.5	7.1	0.4	0.00435	0.00054	13,104
11 2.0 2.0 25.2 22.5 2.7 2.1 1.8 0.2 0.00099 0.00012 12 2.0 4.0 47.0 44.3 2.7 3.9 3.6 0.2 0.00036 0.00012 13 2.0 6.0 68.1 65.3 2.8 5.6 5.3 0.2 0.00348 0.00043 14 2.0 8.0 90.0 85.6 4.3 7.4 7.0 0.4 0.00496 0.00062 15 2.0 10.0 112.3 105.6 6.7 9.2 8.7 0.6 0.00655 0.00082 15 2.0 10.0 112.3 105.6 6.7 9.2 8.7 0.6 0.00655 0.00082 15 2.0 10.2 9.2 8.7 0.6 0.00655 0.00082 0.00082 15 2.0 102.6 6.7 9.2 8.7 0.6 0.00655 0.00082 0.00082 15 2.0 112.3 D5.6 6.7 0.6 0.00655 0.00082 0	Sequence 10	4.0	10.0	114.6	107.1	7.5	9.4	8.8	0.6	0.00585	0.00073	12,030
12 2.0 4.0 47.0 44.3 2.7 3.9 3.6 0.2 0.00216 0.00027 13 2.0 6.0 68.1 65.3 2.8 5.6 5.3 0.2 0.00248 0.00043 14 2.0 8.0 90.0 85.6 4.3 7.4 7.0 0.4 0.00496 0.00062 15 2.0 10.0 112.3 105.6 6.7 9.2 8.7 0.6 0.00655 0.00062 GW GW DATE DATE DATE DATE DATE	Sequence 11	2.0	2.0	25.2	22.5	2.7	2.1	1.8	0.2	0.00099	0.00012	14,894
13 2.0 6.0 68.1 65.3 2.8 5.6 5.3 0.2 0.00348 0.00043 14 2.0 8.0 90.0 85.6 4.3 7.4 7.0 0.4 0.00496 0.00062 15 2.0 10.0 112.3 105.6 6.7 9.2 8.7 0.6 0.00655 0.00082 GW DATE August 19, 2020	Sequence 12	2.0	4.0	47.0	44.3	2.7	3.9	3.6	0.2	0.00216	0.00027	13,499
14 2.0 8.0 90.0 85.6 4.3 7.4 7.0 0.4 0.00496 0.00655 15 2.0 10.0 112.3 105.6 6.7 9.2 8.7 0.6 0.00655 0.00062 GW DATE August 19, 2020 DATE DATE DATE	Sequence 13	2.0	6.0	68.1	65.3	2.8	5.6	5.3	0.2	0.00348	0.00043	12,317
15 2.0 10.0 112.3 105.6 6.7 9.2 8.7 0.6 0.00655 0.00082 GW DATE August 19, 2020 DATE DATE	Sequence 14	2.0	8.0	90.0	85.6	4.3	7.4	7.0	0.4	0.00496	0.00062	11,354
GW DATE DATE	Sequence 15	2.0	10.0	112.3	105.6	6.7	9.2	8.7	0.6	0.00655	0.00082	10,591
DATE	TESTED BY	GW				ugust 19, 202	20					
	REVIEWED BY											

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	040792	Material Code SSRVPS
Date Sampled:	7/30/2020	Station No.: 307+00
Date Tested:	August 19, 2020	Location: 20' RT
Name of Project:	HWY. 45 STRS. & APPRS. (S)
County:	Code: 65 Name:	SEBASTIAN
Sampled By:	FRAZIER / JORDAN	Depth: 0-5
Lab No.:	20201542	AASHTO Class: A-6 (7)
Sample ID:	RV336	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_R = K1 (S_C)^{K_2} (S_3)^{K_5}$

K1 =	15,350
K2 =	-0.23792
	0.22445
$R^2 =$	0.95

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Job No. Date Sampled: Date Tested: Name of Project:	040792 7/30/2020 August 19, 2020 HWY. 45 STRS. & APPRS. (S)	Material Code Station No.: Location:	SSRVPS 511+00 20' LT
County: Sampled By: Lab No.: Sample ID: LATITUDE:	Code:65Name:SEBASTIANFRAZIER / JORDAN20201543RV337	Depth: AASHTO Class: Material Type (1 or 2 LONGITUDE:	0-5 A-6 (7) 2
1. Testing Inform	nation:		
	Preconditioning - Permanent Strain > 5% (Testing - Permanent Strain > 5% (Y=Yes or Number of Load Sequences Completed (0-1	N=No)	N N 15
2. Specimen Info	ormation:		
3. Soil Specimen 4. Soil Properties	Weight of Wet Soil Used (g):		3.95 3.95 3.95 3.95 0.01 8.02 0.00 8.02 12.18 97.68 3118.30
	Optimum Moisture Content (%):		15.7
	Maximum Dry Density (pcf): 95% of MDD (pcf): In-Situ Moisture Content (%):		109.3 103.8 N/A
5. Specimen Pro			
	Wet Weight (g): Compaction Moisture content (%): Compaction Wet Density (pcf): Compaction Dry Density (pcf): Moisture Content After Mr Test (%):		3118.30 15.6 121.63 105.22 15.4
6. Quick Shear Te	est (Y=Yes, N=No, N/A=Not Applicable):		#VALUE!
7. Resilient Modu	ilus, Mr:	15539(S	c)^-0.22720(S3)^0.16301
8. Comments			
9. Tested By:	GW	Date: August 19, 2020	

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

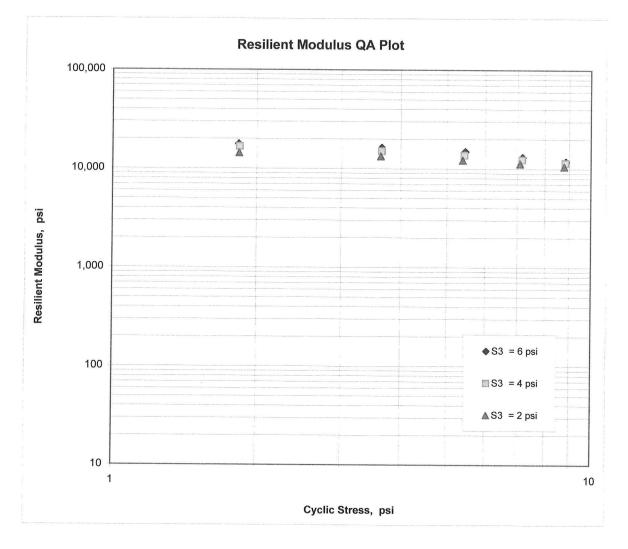
Job No. Date Somulad.	040792			Material Code	SSRVPS
Date Sampleu.	0707/05/1			Station No.:	511+00
Date Tested:	August 19, 2020			Location:	20' LT
Name of Project:	HWY. 45 STRS. & APPRS. (S)	PRS. (S)			
County:	Code: 65	Name:	SEBASTIAN		
Sampled By:	FRAZIER / JORDAN			Depth:	0-5
Lab No.:	20201543			AASHTO Class:	A-6 (7)
Sample ID:	RV337			Material Type (1 or 2): 2	: 2
LATITUDE:				LONGITUDE:	

Resilient Resilient					ε _r M _r		0.00010 17,703	0.00022 16,296	0.00037 14,891							0.00077 11,454	0.00013 14,322		0.00044 12,182	0.00063 11,245	
Average	Recov Def.	LVDT 1	and 2	×	Havg	'n	0.00083	0.00180	0.00294	0.00439	0.00599	0.00089	0.00194	0.00317	0.00463	0.00618	0.00103	0.00219	0.00354	0.00505	
Actual	Applied	Contact	Stress		Scontact	psi	0.2	0.2	0.3	0.5	0.7	0.2	0.2	0.2	0.4	0.6	0.2	0.2	0.2	0.4	30
Actual	Applied	Cyclic	Stress		S _{cyclic}	psi	1.8	3.6	5.5	7.2	8.8	1.8	3.6	5.4	7.2	8.8	1.8	3.6	5.4	7.1	a
Actual	Applied	Max.	Axial	Stress	S _{max}	psi	2.1	3.9	5.7	7.7	9.5	2.1	3.9	5.6	7.6	9.4	2.1	3.9	5.6	7.4	03
Actual	Applied	Contact	Load		Pcontact	lbs	2.8	2.8	3.6	6.0	8.5	2.7	2.8	2.8	5.1	7.5	2.7	2.8	2.8	4.3	ŝ
Actual	Applied	Cyclic Load			P _{cyclic}	lbs	22.3	44.4	66.4	87.4	107.7	22.4	44.4	66.0	87.1	107.4	22.4	44.2	65.6	86.3	106 9
Actual	Applied	Max. Axial	Load		P _{max}	lbs	25.1	47.2	70.0	93.4	116.2	25.2	47.2	68.8	92.2	114.9	25.1	47.0	68.4	90.6	1137
Nominal	Maximum	Axial	Stress		S _{cyclic}	psi	2.0	4.0	6.0	8.0	10.0	2.0	4.0	6.0	8.0	10.0	2.0	4.0	6.0	8.0	10.0
Chamber	Confining	Pressure			လိ	psi	6.0	6.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0	4.0	2.0	2.0	2.0	2.0	2.0
		PARAMETER			DESIGNATION	UNIT	Sequence 1	Sequence 2	Sequence 3	Sequence 4	Sequence 5	Sequence 6	Sequence 7	Sequence 8	Sequence 9	Sequence 10	Sequence 11	Sequence 12	Sequence 13	Sequence 14	Sequence 15

DATE DATE

August 19, 2020

TESTED BY REVIEWED BY


GW

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.	040792	Material Code SSRVPS
Date Sampled:	7/30/2020	Station No.: 511+00
Date Tested:	August 19, 2020	Location: 20' LT
Name of Project:	HWY. 45 STRS. & APPRS. (S)
County:	Code: 65 Name:	SEBASTIAN
Sampled By:	FRAZIER / JORDAN	Depth: 0-5
Lab No.:	20201543	AASHTO Class: A-6 (7)
Sample ID:	RV337	Material Type (1 or 2): 2
LATITUDE:		LONGITUDE:

 $M_{R} = K1 (S_{C})^{K2} (S_{3})^{K5}$

K1 =	15,539
K2 =	-0.22720
K5 =	0.16301
$R^2 =$	0.94

ARKANSAS STATE HIG	HWAY AND TRANSPORTATION MATERIALS E		TTLE ROCK, ARKANSAS
*** S	JONATHAN A. ANNABLE, N OIL SURVEY / PAVEMENT	MATERIALS ENGINEER	RT ***
DATE – 09/01/ JOB NUMBER – 040792 FEDERAL AID NO TO BE PURPOSE – SOIL S SPEC. REMARKS – NO SPE SUPPLIER NAME – STATE NAME OF PROJECT – HWY. PROJECT ENGINEER – NOT PIT/QUARRY – ARKANSAS	ASSIGNED URVEY SAMPLE CIFICATION CHECK 45 STRS. & APPRS. (S) APPLICABLE	MATE SPEC SUPP COUN DIST	ENCE NO 1 RIAL CODE - SSRVPS . YEAR - 2014 LIER ID 1 TY/STATE - 65 RICT NO 04
LOCATION - SEBASTIA SAMPLED BY - FRAZIER/J SAMPLE FROM - TEST HOL MATERIAL DESC SOIL S	N, COUNTY ORDAN E	DATE DATE	SAMPLED - 07/30/20 RECEIVED - 08/05/20 TESTED - 09/01/20
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE	- 107+00 - 06 RT	- S325	- 20201531 - S326 Y - INFORMATION ONLY - 113+00 - 06 LT - 0-5 - BROWN
LATITUDE DEG-MIN-SEC LONGITUDE DEG-MIN-SEC	- 94 20 50.30	- 35 03 26.50 94 20 50.20	- 35 3 30.90 94 20 48.70
NO. 4	 100 - 98 - 94 - 87 - 80	- - 100 - 92 - 88 - 80 - 66 - 60 55	- - - - 98 - 93 - 87 - 82 - 73
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT	- 43 - 24 - A-7-6(17) - 26.4	- 31 - 13 - A-6(4) - 10.4	- 33 - 16 - A-6(10) - 27.2
ACHMSC (IN ACHMBC (IN)- 11.0W		- 10.0W - 3.5 -
	- - - -	- - - -	- - - -
	-	-	_

REMARKS - W=MUTTIPLE LAYERS, X=STRIPPED

-AASHTO TESTS : T24 T88 T89 T90 T265

:

ARKANSAS STATE		AND TRANSPORTAT MATERIALS THAN A. ANNABLE,	DIVISION		ROCK, ARKANSAS
**	* SOIL S	SURVEY / PAVEMEN	T SOUNDING TES	T REPORT *	* *
DATE - 09/ JOB NUMBER - 040 FEDERAL AID NO TO PURPOSE - SOI SPEC. REMARKS - NO SUPPLIER NAME - STA NAME OF PROJECT - H PROJECT ENGINEER - N PIT/QUARRY - ARKAN	792 BE ASSIC L SURVE SPECIFIC TE WY. 45 OT APPL	Y SAMPLE CATION CHECK STRS. & APPRS. (MATERIAL SPEC. YEZ SUPPLIER COUNTY/ST	NO 2 CODE - SSRVPS AR - 2014 ID 1 FATE - 65 NO 04
LOCATION – SEBAS SAMPLED BY – FRAZIE SAMPLE FROM – TEST	TIAN, CO R/JORDA HOLE	Ν		DATE REC DATE TES	PLED - 07/30/20 EIVED - 08/05/20 TED - 09/01/20
MATERIAL DESC SOI	L SURVE	Y - R VALUE- PA	AVEMENT SOUNDIN	1GS	
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE		INFORMATION ONL 113+00 20 LT 0-5	- 20201533 - S327 Y - INFORMATI - 307+00 - 06 RT - 0-5 _ BR/GR	- ON ONLY -	20201534 S328 INFORMATION ONLY 307+00 20 RT 0-5 BROWN
LATITUDE DEG-MIN-: LONGITUDE DEG-MIN-:			- - 35 06 94 22		35 6 8.40 94 22 2.80
3/8 NO. NO.	IN IN 4 - 10 - 40 - 80 -		- - - 98 - 93 - 88 - 87 83		100 98 94 87 82 80 75
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT	- - -		- 39 - 22 - A-6(18) - 23.4		33 15 A-6(10) 16.5
ACHMSC AGG.BASE CRS,CL-7	(IN) - (IN) - - - - - - - - - - -		- 8.5WX - 2.0 - - - - -		

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED

-

:

ARKANSAS STATE H	HIGHWAY AND TRANSPORTATI MATERIALS		LITTLE ROCK, ARKANSAS
***	JONATHAN A. ANNABLE, SOIL SURVEY / PAVEMENT		
SPEC. REMARKS - NO S SUPPLIER NAME - STAT	292 BE ASSIGNED SURVEY SAMPLE SPECIFICATION CHECK YE NY. 45 STRS. & APPRS. (S DT APPLICABLE	MÆ SE SU CC DI	EQUENCE NO 3 ATERIAL CODE - SSRVPS PEC. YEAR - 2014 JPPLIER ID 1 DUNTY/STATE - 65 CSTRICT NO 04
LOCATION – SEBAST SAMPLED BY – FRAZIEF SAMPLE FROM – TEST H	'IAN, COUNTY R/JORDAN	DA DA	ATE SAMPLED - 07/30/20 ATE RECEIVED - 08/05/20 ATE TESTED - 09/01/20
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE	- 314+00 - 06 LT	- S330	- 20201537 - S331 DNLY - INFORMATION ONLY - 504+00 - 06 RT - 0-5 - BROWN
LATITUDE DEG-MIN-S	EC - 35 6 15.10 EC - 94 22 2.90		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1 1/2 3/4 3/8 NO. NO. NO.	IN 100 IN 99 4 - 92 10 - 88 40 - 84 80 - 80	- - - - 97 - 91 - 68 - 62 - 53	- - - - 96 - 89 - 79 - 74 69
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT	- 49 - 30 - A-7-6(20) - 21.9	- 32 - 14 - A-6(4) - 22.5	- 39 - 23 - A-6(14) - 21.6
ACHMSC (ACHMBC ((IN) - 8.0W (IN) - 3.0 (IN) - 2.0 		- 8.0W - 1.0

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED

-

:

-

MATERIALS DIVISION	
JONATHAN A. ANNABLE, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***	*
FEDERAL AID NOTO BE ASSIGNEDSPEC. YEARPURPOSE-SOIL SURVEY SAMPLESUPPLIER ISPEC. REMARKS-NO SPECIFICATION CHECKCOUNTY/STASUPPLIER NAME-STATEDISTRICT NNAME OF PROJECT-HWY. 45 STRS. & APPRS. (S)DISTRICT NPROJECT ENGINEER-NOT APPLICABLEPIT/QUARRY-ARKANSASDATE SAMPILOCATION-SEBASTIAN, COUNTYDATE SAMPISAMPLED BY-FRAZIER/JORDANDATE RECEI	CODE - SSRVPS R - 2014 ID 1 ATE - 65 NO 04 LED - 07/30/20 IVED - 08/05/20
SAMPLE FROM - TEST HOLE DATE TESTE MATERIAL DESC SOIL SURVEY - R VALUE- PAVEMENT SOUNDINGS	ED - 09/01/20
TEST STATUS- INFORMATION ONLY- INFORMATION ONLY- ISTATION- 504+00- 511+00- 5LOCATION- 20 RT- 06 LT- 2DEPTH IN FEET- 0-5- 0-5- 0	S334
LATITUDE DEG-MIN-SEC - 35 6 55.10 - 35 07 2.20 - LONGITUDE DEG-MIN-SEC - 94 22 1.40 94 22 1.50	35 7 2.20 94 22 1.60
% PASSING 2 IN - <	100 99 95 86 69 63 59
LIQUID LIMIT-34-42-PLASTICITY INDEX-17-21-AASHTO SOIL-A-6(5)-A-7-6(19)-UNIFIED SOIL% MOISTURE CONTENT-25.011.7-	36 16 A-6(7) 17.8
ACHMSC ACHMBC AGG.BASE CRS,CL-7 (IN) 1.0 2.0 2.0 	

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED

-

:

ARKANSAS STATE HIGHWAY AND TRANSPORTATI MATERIALS 1	
JONATHAN A. ANNABLE, *** SOIL SURVEY / PAVEMENT	MATERIALS ENGINEER
DATE - 09/01/20 JOB NUMBER - 040792 FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SPEC. REMARKS - NO SPECIFICATION CHECK SUPPLIER NAME - STATE NAME OF PROJECT - HWY. 45 STRS. & APPRS. (S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS	DISTRICT NO 04
LOCATION – SEBASTIAN, COUNTY SAMPLED BY – FRAZIER/JORDAN SAMPLE FROM – TEST HOLE MATERIAL DESC. – SOIL SURVEY – RESISTANCE R-	DATE SAMPLED - 07/30/20 DATE RECEIVED - 08/05/20 DATE TESTED - 09/01/20 VALUE ACTUAL RESULTS
SAMPLE ID-RV335TEST STATUS-INFORMATION ONLYSTATION-107+00	- INFORMATION ONLY - INFORMATION ONLY - 307+00 - 511+00
LOCATION - 20 RT DEPTH IN FEET - 0-5 MAT'L COLOR - BROWN MAT'L TYPE -	20 RT 20 LT 0-5 0-4z BROWN BROWN
LATITUDE DEG-MIN-SEC - 35 3 26.50 LONGITUDE DEG-MIN-SEC - 94 20 50.20	- 35 06 8.40 - 35 7 2.20 94 22 2.80 94 22 1.60
<pre>% PASSING 2 IN 1 1/2 IN 100 3/4 IN 92 3/8 IN 74 NO. 4 - 66 NO. 10 - 57 NO. 40 - 45 NO. 80 - 40 NO. 200 - 35</pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
LIQUID LIMIT - 33 PLASTICITY INDEX - 14 AASHTO SOIL - A-2-6(1) UNIFIED SOIL - % MOISTURE CONTENT - - - - - - - - - - - - - - - - - - -	- 32 - 36 - 13 - 16 - A-6(7) - A-6(7)
REMARKS - W=MULTIPLE LAYERS, X=STRIPPED -	

AASHTO TESTS : T24 T88 T89 T90 T265

:

JOB: 040792

Arkansas State Highway Transporation Department

JOB NAME: HWY. 45 STRS. & APPRS. (S)

Materials Division Michael Benson, Materials Engineer

COUN	TY NO.	65	DATE TESTE	D	9/1/2	2020			M	ichael B	enson, Materia	ls Engine	eer
STA.#	LOC.	DEPTH	COLOR	#4	#10		#80	#200	L.L.	<i>P.I.</i>	SOIL CLASS	LAB #:	%MOISTURE
113+00	20 LT	0-5	BROWN	3		E		s s					
107+00	20 RT	0-5	BROWN	66	57	45	40	35	33	14	A-2-6(1)	RV335	
307+00	20 RT	0-5	BROWN	90	84	76	72	68	32	13	A-6(7)	RV336	
511+00	20 LT	0-4z	BROWN	95	87	68	63	60	36	16	A-6(7)	RV337	
504+00	20 RT	0-5	BROWN	84	75	64	58	50	34	17	A-6(5)	S323	25
107+00	06 RT	0-5	BROWN	98	94	87	80	74	43	24	A-7-6(17)	S324	26.4
107+00	20 RT	0-5	BROWN	88	80	66	60	55	31	13	A-6(4)	S325	10.4
113+00	06 LT	0-5	BROWN	98	93	87	82	73	33	16	A-6(10)	S326	27.2
307+00	06 RT	0-5	BR/GR	98	93	88	87	83	39	22	A-6(18)	S327	23.4
307+00	20 RT	0-5	BROWN	94	87	82	80	75	33	15	A-6(10)	S328	16.5
314+00	06 LT	0-5	BROWN	92	88	84	80	71	49	30	A-7-6(20)	S329	21.9
314+00	20 LT	0-5	BROWN	97	91	68	62	53	32	14	A-6(4)	S330	22.5
504+00	06 RT	0-5	BROWN	96	89	79	74	69	39	23	A-6(14)	S331	21.6
511+00	06 LT	0-5	BROWN	99	97	92	89	87	42	21	A-7-6(19)	S333	11.7
511+00	20 LT	0-4z	BROWN	95	86	69	63	59	36	16	A-6(7)	S334	17.8

DATE TESTED 9/1/2020																	~			Page 1 of 1
Arkansas State Highway Transporation Department Materials Division	Michael Benson, Materials Engineer	PAVEMENT SOUNDINGS								AGG.BASE CRS,CL-7 2.0	AGG.BASE CRS,CL-7		AGG.BASE CRS,CL-7	1	AGG.BASE CRS,CL-7	I	AGG.BASE CRS,CL-7 2.0	AGG.BASE CRS, CL-7	Tuesday, September 8, 2020	
APPRS. (S)			ACHMBC 2.0	ACHMBC	 ACHMBC	3.5	AGG.BASE CRS,CL-7 2.0	AGG.BASE CRS,CL-7	I	ACHMBC 3.0	ACHMBC	1	ACHMBC	1.0	ACHMBC	I	ACHMBC 1.0	ACHMBC		
JOB: 040792 JOB NAME: HWY. 45 STRS. & APPRS. (S)	65		ACHMSC 11.0W	ACHMSC	 ACHMSC	10.0W	ACHMSC 8.5WX	ACHMSC	I	ACHMSC 8.0W	ACHMSC	I	ACHMSC	8.0W	ACHMSC	I	ACHMSC 8.0WX	ACHMSC		
0 I <i>ME:</i> HI		LOC.	06 RT	20 RT	06 L T	200	06 RT	20 RT		06 LT	20 LT		06 RT		20 RT		06 LT	20 LT		
JOB: JOB NA	COUNTY NO.	STA.# LOC.	107+00	107+00	113+00		307+00	307+00		314+00	314+00		504+00		504+00		511+00	511+00	comments:	

ARDOT.gov IDriveArkansas.com Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

August 17, 2021

TO: Mr. Rick Ellis, Bridge Engineer

SUBJECT: Job No. 040792 Hwy. 45 Strs. & Apprs. (S) Sebastian County Route 45, Section 01

Introduction

Submitted herein are foundation recommendations for the proposed bridges planned on State Highway 45 in Sebastian County. Preliminary information and recommendations have been provided to and discussed with bridge designers. Recommendations for the approach embankments will be provided in a supplemental report.

This project consists of constructing two (2) bridges to replace the existing bridges on Highway 45. The bridge over School House Branch (School House Branch Bridge) is planned at Site 1 and will be constructed at an offset location west of the existing bridge. This new bridge will be a three (3)-span, continuous W-beam unit with a total length of approximately 188 ft and an out-to-out width of 36.5 feet.

The other new bridge, Bridge over Johnson Branch (Johnson Branch Bridge) planned at Site 2, will be a replacement bridge to be constructed in the alignment of the existing bridge. The Johnson Branch Bridge will also be a three (3)-span continuous W-beam unit with an out-to-out width of 36.5 feet. Total length of the Johnson Branch Bridge is designed to be 176 feet. 2-Horizontal to 1-vertical (2H:1V) end slopes are planned for both bridges. 3H:1V configuration is designed for the side slopes of both bridges.

Field Investigation

A subsurface investigation was requested on March 10, 2021 by Bridge Division to develop recommendations for bridge foundations and to verify suitability of bridge abutment embankment configuration. A total of eight (8) borings were requested and seven (7) borings were completed.

Site 1 subsurface conditions were investigated using a combination of three (3) borings and two (2) test pits. A test pit (Test Pit 1) was excavated at the exact location of a completed boring (Boring 2 School House Branch, Sta. 109+77.5, 18 ft Right of Construction C.L.) to verify boring results. The boring originally planned in the creek channel of School House Branch (Boring 3 School House Branch, Sta. 110+42.5, C.L. of Construction) was not drilled due to soft ground and inaccessibility to the planned location by drill rig. Consequently, a test pit (Test Pit 2) was excavated at this planned boring location in lieu of that boring to investigate subsurface conditions. In addition, some borings were slightly offset due to presence of a sewer line at Site 1.

Site 2 subsurface conditions were investigated by drilling four (4) borings. As noted, Johnson Branch Bridge is a replacement bridge planned in the alignment of existing bridge. Boring 2 was drilled at ground elevation and offset 18 ft right of centerline due to access issues.

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

Boring 3 was drilled through the existing bridge deck at a suitable location determined by ARDOT Heavy Bridge Section.

The approximate locations of the borings and test pits are presented in the Plan of Borings and Test Pits included in Attachment A for the School House Branch Bridge and in Attachment B for the Johnson Branch Bridge. The borings were advanced with a CME 45B rotary drill rig using a combination of hollow-stem auger and diamond core method. The respective boring logs, showing the subsurface conditions encountered in the borings and the results of field and laboratory tests, are also included in Attachment A and Attachment B, immediately following the Plan of Borings and Test Pits. Standard Penetration Tests (SPT) were conducted in accordance with ASTM D1586 for field testing and soil sampling. The correction factor for the hammer is indicated on the boring logs. Liners were not used inside the standard split-barrel samplers.

The number of blows required to drive the standard split-barrel sampler for each 6-inch penetration of the total 18-inch drive were counted and shown on the logs. SPT N-values are defined as the number of blows required to advance the split barrel the final 12 inches. The SPT N-values indicated on the logs are raw (uncorrected) blow count measured in field.

Core samples of bedrock were retrieved by using NQ3-size triple-tube core barrels (rock core diameter of 1-3/4 in. and hole diameter of 3 in.). For each core run, Rock Quality Designation (RQD) was determined in field by logger and further evaluated by Professional Geologist (PG). RQD, expressed in percent, is defined as the sum of the intact core pieces that are longer than 4 in. divided by the total length of the core run. The RQD of each core run is indicated on corresponding log. Core pictures are included in Attachment A and Attachment B for Site 1 and Site 2, respectively.

The test pits were performed using a track-mounted excavator fitted with a 24 in.-wide bucket. Representative soil and weathered rock samples were obtained from excavation spoil for further evaluation or for laboratory testing.

Groundwater was also observed during the drilling and excavating process. Groundwater observations were noted on the logs.

Lab Investigation

All samples were brought to the Materials laboratory for further evaluation and testing. Rock cores were first examined by licensed Professional Geologists to verify RQD measured in field and to determine Geological Strength Index (GSI) and Rock Mass Rating (RMR). Compressive strength of rock cores was then determined by uniaxial compressive test on intact rock cores in accordance with ASTM D7012, Method C. The results of uniaxial compressive tests on intact rock cores are presented in Attachment C for Site 1 and Site 2. GSI and RMR, as evaluated by Professional Geologist, are also included in Attachment C.

Site Conditions

<u>Site 1 - School House Branch</u>. The existing 3-span bridge over School House Branch consists of precast concrete channel beam unit with a total length of approximately 69 ft and an out-to-out width of approximately 28 feet. All the bents are supported by concrete bents on concrete columns with abutment slopes protected by concrete riprap. The meandering School

ARKANSAS DEPARTMENT OF TRANSPORTATION
ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director
MATERIALS DIVISION
11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

House Branch was observed to flow eastward under the south span and middle span (July 2021). The channel bottom is primarily comprised of round to sub-angular gravel, cobbles, and boulders. Localized scour around existing columns were observed. The new bridge will be constructed on the west side of existing bridge. The area in the new bridge alignment is generally vegetated with localize underbrush near the creek banks. An approximately 4-in. diameter underground PVC sewer line is in this alignment.

<u>Site 2 – Johnson Branch</u>. The existing bridge over Johnson Branch is a 7-span precast concrete channel beam unit with a total length of approximately 133 ft and an out-to-out width of approximately 25 feet. All the bents are supported by concrete bents on concrete columns with abutment slopes protected by concrete riprap. The Johnson Branch was observed to flow eastward under the 4th and 5th spans (July 2021). A buried water line and a telecommunication line parallels the east side of the roadway. The water line is covered by concrete in the channel. Scour has caused the south bank to collapse over the water line. A residence is located to the northeast of the bridge. The slightly longer (176 ft) new bridge will be constructed in the same alignment as the existing bridge.

Site Geology

The project alignment is located on rocks mapped as the McAlester Formation (map symbol P_{ma}). The McAlester consists of (in ascending order): several hundred feet of shale with thin sandstone and coal (the Lower Hartshorne coal is just above the base), several hundred feet of shale with a few sandstone beds and coal (Upper Hartshorne Coal), and capped by several hundred feet of shale with a few coal beds. The unit ranges from about 500 to 2,300 feet in thickness.

Generalized Subsurface Conditions

<u>Site 1 - School House Branch</u>. The ground surface is typically covered by a thin layer of soft dark brown silty clay with organics. Below the surface organic-containing silty clay, the overburden soils are generally comprised of medium hard, brown and gray shale to sandstone gravel, cobbles to boulders with variable amount of silty clay (completely weathered shale), clayey sand (completely weathered sandstone), to sand (completely weathered sandstone). These materials are considered as completely weathered shale or sandstone with less weathered zones in the form of gravel, cobbles, and boulders. Locally this stratum is less weathered and transforms to soft, brown and gray highly weathered shale (Test Pit 2 and Boring 4). The overburden soils and highly weathered shale are not competent and not suitable to support bridge foundations.

<u>Competent</u> medium hard gray, slightly weathered to unweathered shale was encountered in the borings and Test Pit 2 at depths of 7.0 ft to 17 feet (Elev. 588.8 to 586.7). The estimated elevation of the competent rock, as revealed by the borings and test pit, are summarized below in Table 1a.

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

Table 1a: Estimated Elevation of Competent Rock – School House Branch

Bent No.	Ground Surface Elevation @ Boring Location, ft	Depth to Competent Rock, ft	Estimated Elevation of Competent Rock, ft
1	603.7	16.3	587.4
2	603.7	17.0	586.7
3	595.8	7.0	588.8
4	596.3	8.0	588.3

<u>Site 2 – Johnson Branch</u>. The overburden soils are generally comprised of very loose to loose, brown clayey sand to sand with some shale fragments. The sandy soils are underlain by dense to very dense, dark gray shale fragments, cobbles, to boulders with variable amounts of clay and medium stiff sandy clay with rock fragments. These materials are considered as completely weathered shale with less weathered zones in the form of shale fragments, cobbles, and boulders. Locally this stratum is less weathered and transforms to medium hard, brown and gray, highly weathered to weathered shale (Boring 2 and Boring 4). The overburden soils and highly weathered to weathered shale are not competent.

<u>Competent</u> medium hard, dark gray, slightly weathered to unweathered shale was encountered in the borings at depths of 6.8 ft to 20.5 feet (Elev. 517.3 to 510.4). The estimated elevation of the competent rock, as revealed by the borings, are summarized below in Table 1b.

Bent No.	Ground Surface Elevation, ft	Depth to Competent Rock, ft	Estimated Elevation of Competent Rock, ft				
1	530.9	20.5	510.4				
2	523.9	8.7	515.2				
3	522.1	6.8	515.3				
4	531.2	13.9	517.3				

Table 1b: Estimated Elevation of Competent Rock – Johnson Branch

Seismic Conditions

In light of the average subsurface conditions as revealed by the borings, a Seismic Site Class B (Rock Profile) is calculated for the project site. Utilizing the Seismic Site Class B and the approximate GPS coordinates of the project sites, the following design peak ground acceleration coefficient (A_s), design short-period spectral acceleration coefficient (S_{Ds}), as well as design long-period spectral acceleration coefficient (S_{D1}), are determined. These seismic coefficients are summarized in Table 2a and Table 2b below for Site 1 and Site 2, respectively. Design Response Spectrum for each site is presented in Attachment D.

ARDOT.gov IDriveArkansas.com Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

Table 2a: Summary of Design Ground Motion Acceleration Response Coefficients - Site 1

Acceleration Coefficient	Value (g)
A _S (Site PGA)	0.055
S _{DS} (0.2 sec)	0.129
S _{D1} (1 sec)	0.052

Table 2b: Summary of Design Ground Motion Acceleration Response Coefficients – Site 2

Acceleration Coefficient	Value (g)
A _S (Site PGA)	0.055
S _{DS} (0.2 sec)	0.128
S _{D1} (1 sec)	0.051

For the larger design long-period spectral acceleration coefficient (S_{D1}) of 0.052, a Seismic Performance Zone 1 is considered applicable to both project sites.

Foundation Recommendations

<u>Steel H-Piling – Bents 1 and 4 of Both Bridges.</u> It is anticipated steel h-piling will be utilized to support the foundation loads at the end bents (Bents 1 and 4 of both sites / bridges). Final pile size has not been determined. Steel h-piles should be driven to practical refusal and should penetrate through embankment fill, the overburden soils and the highly weathered to weathered shale, to bear in the <u>competent</u> slightly weathered to unweathered shale. Preboring will be required at all the end bent locations for penetrating through the overburden soils with gravel, cobbles, and / or boulders.

Practical refusal is defined as a maximum penetration of 1.0 inch for 20 blows by a pile hammer. For the purpose of estimating pile length, a pile penetration of 1 ft into the competent rock is assumed. This estimated penetration is based on the results of the borings / test pits and our experience with similar foundation rock. The results of the borings indicate moderate to severe driving conditions are expected to be experienced. Consequently, rock points are recommended for all the h-piles driven to refusal.

A minimum pile penetration of 10 ft, measured below natural ground surface, is recommended. Greater pile length / penetration may be warranted by lateral resistance demand. Preboring is expected to be required for achieving the minimum 10 ft of penetration at Bent 4 of the School House Branch Bridge (Site 1). Based on the results of the borings and the assumption of approximately 1 ft penetration into the competent rock, the estimated shallowest pile tip elevation is summarized below in Table 3.

ARDOT.gov IDriveArkansas.com Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

Table 3: Summary of Estimated Shallowest Pile Tip Elevation

Bridge	Bent No.	Estimated Shallowest Pile Tip Elevation	Comments
School House	1	Elev. 586	Prebore to penetrate cobbles
Branch	4		Prebore to achieve the required min. 10 ft of penetration
Johnson Branch	1	Elev. 509	Prebore to penetrate cobbles
Johnson Branch	4	Elev. 516	Prebore to penetrate cobbles

The estimated shallowest pile tip elevation summarized in the table above is based on our evaluation of the rock cores retrieved from the borings. Actual subsurface conditions can vary from those encountered in the borings. As-constructed pile tip elevation can vary and must be field verified.

Nominal axial resistance of steel h piles driven to refusal in competent rock is governed by the structural capacity of the piles. Therefore the nominal resistance should be determined by the Structural Engineer utilizing applicable AASHTO LRFD design procedures. The Geotechnical Section is available to provide geotechnical inputs for structural evaluation of the nominal axial pile resistance. In light of the expected moderate to severe driving conditions, a resistance factor (φ_c) of 0.50 is recommended for calculating factored structural bearing resistance of h-piles. For steel piling driven to refusal in competent rock, long-term, post-construction settlement is expected to be negligible.

<u>Spread Footings – Bents 2 and 3 of Both Bridges.</u> It is understood spread footings are preferred by the bridge designers for use to support the foundation loads of the intermediate bents (Bents 2 and 3) of both bridges. It is also understood bridge designers plan to embed the spread footings 2 ft into competent rock. Based on the results of the borings and our field observations, spread footings founded 2 ft into competent rock are suitable to be utilized to support the intermediate bents. Plan footing bottom elevations, as provided by bridge designers, are summarized below in Table 4. Recommendations for spread footings are provided below. Other foundation types can be evaluated upon request.

Bridge	Bent No.	Plan Footing Bottom Elevation
School House Branch	2	Elev. 585.2
School House Branch	3	Elev. 586.8
Johnson Branch	2	Elev. 513.03
Johnson Branch	3	Elev. 513.03

Table 4: Summary of Plan Footing Bottom Elevation

It is recommended a maximum nominal bearing capacity of 35 ksf be utilized for spread footings embedded at least 2 ft into competent slightly weathered to unweathered shale. A resistance factor (ϕ_b) of 0.45 is considered suitable for evaluation of factored bearing resistance of spread footings on rock. Consequently, a maximum factored bearing capacity of 15.8 ksf is

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

suitable. Post-construction settlement of spread footings founded in competent rock is expected to be negligible.

Uplift resistance can be provided by footing self-weight and structure dead loads. Footings may be sized to negate the factored uplift loads. If additional uplift resistance is needed, rock anchors can be utilized. Recommendations of rock anchors can be provided upon request. It is understood footings are so designed to provide adequate uplift resistance and rock anchors are not needed.

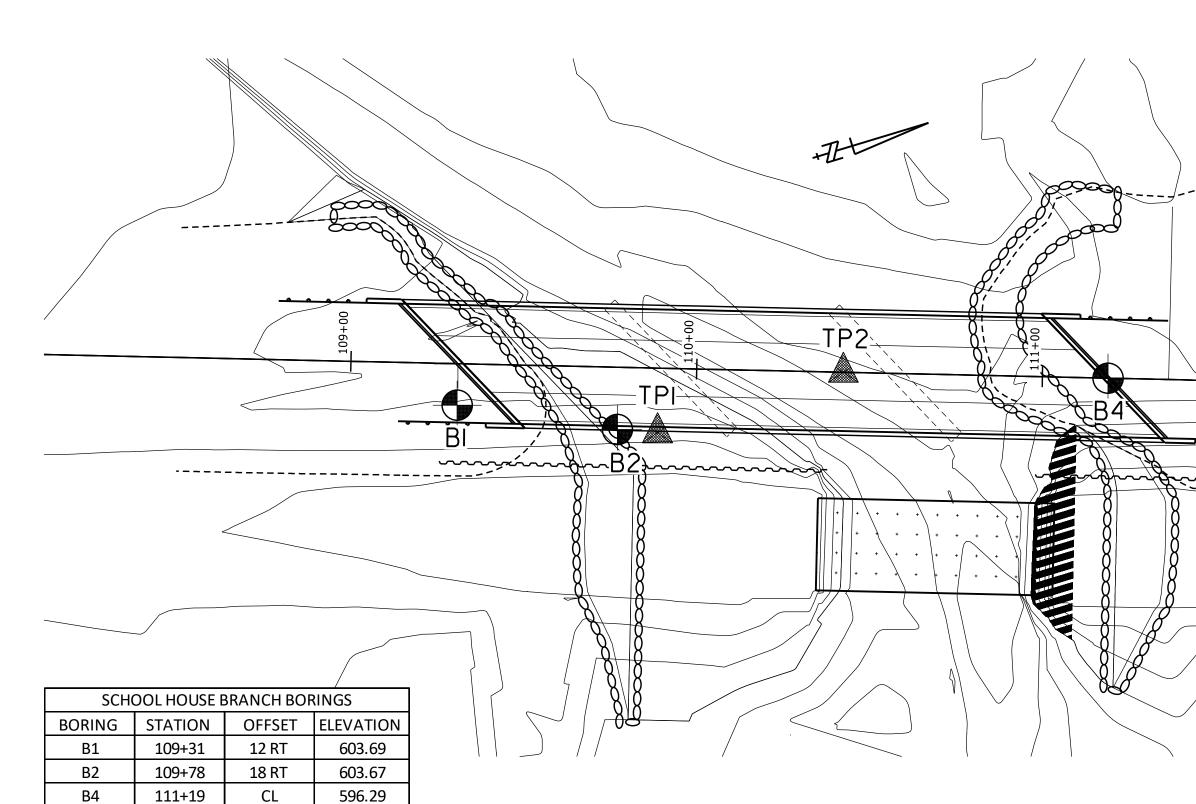
Lateral resistance of spread footings can be evaluated utilizing a maximum nominal coefficient of friction (tan δ) of 0.70 for concrete footings on clean rock and a resistance factor for sliding (ϕ_{τ}) of 0.85. Additional lateral resistance may be provided by passive resistance of the competent rock that is in hard contact with the spread footings and below scour depth. Passive resistance from any overburden soils, weathered rock, and upper 2 ft of competent rock should be neglected from passive resistance evaluation. Factored passive resistance can be provided upon request. It is understood the footings will be embedded 2 ft in the competent rock. Consequently, passive resistance should be neglected in design.

It is recommended the water flow be diverted from the plan footing excavation areas before starting footing excavation. Any underground utilities in the plan footing excavation areas should be completely removed or relocated and properly backfilled to prevent seepage into excavation bottom. As a minimum, sump pump should be established to remove any water seepage into the excavation bottom. Any footing over-excavation should be properly backfilled with Class S concrete.

D₅₀ for Scour Analysis

The particle size through which 50% of particles by weight passing, D_{50} , is summarized below in Table 5. Detailed particle size distribution curves used for D_{50} determination are included in Attachment E.

Bridge	Station	Sample Type	Location	D ₅₀ , mm								
School House	109+17, 41 Lt.	Bulk	Creek Bank	4.75								
Johnson	310+78, 16 Lt.	Bulk	Creek Bank	<0.075								


Table 5: Summary of D₅₀ for Scour Analysis

Jonathan A. Annable

Materials Engineer

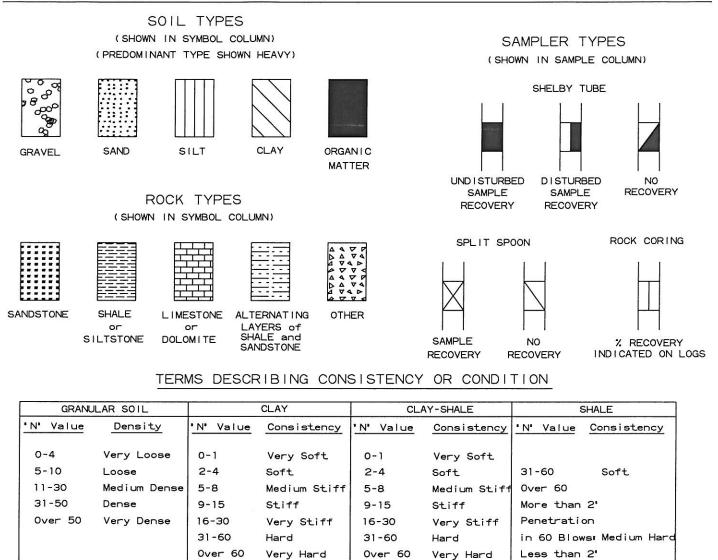
JAA:yz:mlg:jcs

cc: State Construction Engineer District 4 Engineer G. C. File Attachment A

SCHOOL HOUSE BRANCH TEST PITS										
BORING	STATION	OFFSET								
TP1	109+78	18 RT								
TP2	110+43	CL								

		FED. ROAD DIST. NO.	STATE	FED. AID PROJ. NO.	SHEET NO.	TOTAL SHEETS
		6	AR			
		JOB N		040792		
			PLAN (OF BORINGS AND TE	ST PITS	
	<u> </u>		_			
			7			
	\wedge	5				
		1				
	· · ·					
~~						
		•				
	/					
/		\sim				
	PLAN OF BORIN					
					,	
	HWY. 45 STF ROUTE 4 SEBASTI SCHOOL H	5 SF(APP CTIC	7K5 (5) DN 1		
	SEBAST	AN C	NUC	ÎTY		
		OUSE	BR			
	JOB NO. 040792			SHEET	1/1	

			DEPARTMENT OF TRANSPORTATI DIVISION - GEOTECHNICAL SEC.	ON				BOR PAG		NO. 1	1 Sc OF		ol Hou	ise Brar	nch	
JOB N	О.		040792 Sebastion County					DAT	E:				e 15, 2	2021		-
JOB N	AME	:	Hwy 45 Strs. & Apprs. (S) Route 45, Section 01								LING: m Au	ver	- Diar	nond Co	re	
STATI	ION:		109+31						IPME			501	CME		iic	
LOCA			17' Right of Construction Centerline												47	
			Anthony Nicholson N DEPTH: 36.3					HAM	IMER	COR	RECTIO	ON F	ACTOR	<u>k: I</u>	.47	-
D		S											Ŋ			
E P T H	S Y M B O L	A M P L E	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 603.7	SOIL GROUP	PL	+		E CO			-+-) LL	PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D
		3	SURFACE ELEVATION. 603.7		1	02	0 3	30 4	0 5	06	0 70		H			
		\times	Moist, Medium Dense, Brown Sand with Gravel, Cobbles, and Boulders	_										<u>11</u> 16-13		
															50	0
 			Brown and Gray Sandstone Cobbles and Boulders*	_											30	0
			SHALE - Slightly Weathered, Medium Hard, Gray												100	28
 24 			SHALE - Unweathered, Medium Hard, Occasional Fractures, Gray												96	38
 				-											100	70
 36			SHALE - Unweathered, Medium Hard, Slightly Dipping, Gray												100	100
 42			Boring Terminated													
REM	ARK	S:	Lost circulation and approximately 11.	3' below	grou	ind l	eve	l.								


MATERIALS DIVISION - GEOTECHNICAL SEC.									BORING NO. 2 School House Branch PAGE 1 OF 1										
JOB N JOB N	0.		040792 Sebastion County Hwy 45 Strs. & Apprs. (S) Route 45, Section 01	Ľ	DATE: June 15, 2021 TYPE OF DRILLING: Hollow Stem Auger - Diamond Core														
LOCATION: 18' Right of Construction Centerline										EQUIPMENT: CME 45B									
			N DEPTH: 32				H	IAMM	ER CO	RRECT	TON I	FACTOF	<u> </u>	.47	-				
DEPTH FT.	S Y M B O L	S A ∑ P L E S	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 603.7	SOIL GROUP	PL ·	+	· — —	· — —	ГЕНТ 	-+	• LL '0	PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D				
 5																			
 		\times	Moist, Medium Dense, Brown Clayey Sand with Sandstone Cobbles and Boulders*	-									<u>3</u> 11-12						
 15			Brown Sandstone Boulders											33	0				
 20 	2		SHALE - Slightly Weathered, Medium Hard, Slickensided, Gray											96	76				
 			SHALE - Unweathered, Medium Hard, Gray											96	60				
 														86	46				
			Boring Terminated																
	ARK	S:	* Auger refusal at 10.8' below ground l	evel.						•									

MATERIALS DIVISION - GEOTECHNICAL SEC.									BORING NO. TP-1 School House Branch PAGE 1 OF 1											
JOB NO. 040792 Sebastion County											DATE: July 20, 2021									
JOB NAME: Hwy 45 Strs. & Apprs. (S) Route 45, Section 01										TYPE OF DRILLING: Backhoe dug trench										
										Backhoe dug trench EQUIPMENT:										
LOCATION: 18' Right of Construction Centerline																				
LOGGED BY: Yongsheng Zhao TOMPLETION DEPTH: 11										COR	RECT	'ION I	FACTOR	e: N	[/A	_				
	PLE'.		N DEPTH: 11																	
D E P T H	S Y M B O L	S A M P L E S	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 603.7	SOIL GROUP	PL	+		E CO			+		PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D				
		0	SURFACE ELEVATION. 603.7			02	2 <u>03</u>	0 4	05	06	0 7	0	_							
<u> </u>			Soft, Dark Brown Silty Clay with Shale and Sandstone Fragments																	
			Medium Hard, Silty Clay with Sandstone Cobbles and Occasiona _Boulders																	
\vdash –																				
			Shale and Sandstone Cobbles and Boulders with Silty Clay*																	
10																				
			Boring Terminated																	
L _																				
15																				
<u> </u>																				
20																				
<u> </u>																				
<u> </u>																				
\vdash –																				
25																				
	1																			
\vdash –																				
30																				
35				<u> </u>			<u> </u>													
REM	ARK	S:	* Water Seepage at 10' below ground	level. Ba	ckho	be re	etusa	al at	11'1	oelo	w gr	oun	d leve	Ι.						
																				

									BORING NO. TP-2 School House Branch											
										PAGE 1 OF 1										
JOB NO.040792Sebastion CountyJOB NAME:Hwy 45 Strs. & Apprs. (S)										DATE: July 20, 2021										
JOB N	Route 45, Section 01										TYPE OF DRILLING: Backhoo dug Tranch									
STATION: 110+42.5										Backhoe dug Trench										
LOCATION: Construction Centerline									EQUIPMENT:											
LOCATION: Construction Centerline LOGGED BY: Yongsheng Zhao									HAMMER CORRECTION FACTOR: N/A											
			N DEPTH: 7					IIAN	INILI	COR	KLC I	10101	ACTO	. 1	//1	_				
D		S											7							
E	S	A											PERCENT PASSING NO. 200 SIEVE	SV						
Р	Y M	Μ	DESCRIPTION OF MATERIAL	SOIL									AS	Ľ ľo	% T	% R				
Т	B	P		GROUP									H H S OS	FB R6	C	Q				
н	Ō	L E			1	MOIS	TUR	E CO	NTE	NT (9	6)	•	RCENT PASSII NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	R	D				
FT.	L	S S	SURFACE ELEVATION: 595.8									LL	PER	Ż						
			Soft, Dark Brown Silty Clay with			0 2	20 3	<u>30 4</u>	0 5	06	07	0								
— —			Some Organic Matter (Roots)																	
<u> </u>			Medium Hard, Silty Clay with	1																
			Sandstone Cobbles and Boulders	-																
			SUALE Highly Monthered Soft																	
5			SHALE - Highly Weathered, Soft Brown and Gray																	
			Brown and Ordy																	
			SHALE - Weathered, Medium Hard	, 																
			Dark Gray*	1																
L _			Boring Terminated																	
10																				
15																				
L _																				
L _																				
20																				
\square																				
\square																				
\square																				
\square																				
25																				
\square																				
	1																			
30																				
	1																			
	1																			
35																				
REM	ARK	S:	Backhoe refusal at 7' below ground le	vel.																

								BORING NO. 4 School House Branch PAGE 1 OF 1											
JOB NO. 040792 Sebastion County									DATE: June 22, 2021										
JOB NAME: Hwy 45 Strs. & Apprs. (S)									TYPE OF DRILLING:										
	Route 45, Section 01									Hollow Stem Auger - Diamond Core									
STATION: 111+19									EQUIPMENT: CME 45B										
LOCA			Construction Centerline																
			Anthony Nicholson					HAM	MER	COR	RECTI	ION F	FACTOR	e: 1.	.47	-			
	PLE		N DEPTH: 20												_				
D E P T H	S Y M B O L	SAMPLE	DESCRIPTION OF MATERIAL	SOIL GROUP	PL	+		E COI			-+-	LL	PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D			
FT.	N 28 X 3	S	SURFACE ELEVATION: 596.3		1	0 2	0 3	0 40) 5	06	0 70)	Ч						
 			Moist, Medium Dense, Brown Clayey Sand with Gravel Moist, Dense, Brown Clayey Sand with Gravel Moist, Dense, Brown Gravel (Rock	-										12 11-16 11 13-35					
 			Fragments) Brown Clayey Sand with Gravel and Cobbles SHALE - Slightly Weathered,	3											62	29			
 			Medium Hard, Frequent Slickensides, Dark Gray SHALE - Slightly Weathered, Medium Hard with Soft Layers, Frequent Slickensides, Dark Gray	-											99	46			
 0			SHALE - Slightly Weathered, Medium Hard, Frequent Slickensides, Dark Gray												92	52			
 		S.	Boring Terminated																
	АКК	S:																	

_EGEND

1. Ground water elevations indicated on boring logs represent ground water elevations at date or time shown on boring log. Absence of water surface implies that no ground water data is available but does not necessarily mean that ground water will not be encountered at locations or within the vertical reaches of these borings.

Penetration in 60 Blows¤ Hard

- 2. Borings represent subsurface conditions at their respective locations for their respective depths. Variations in conditions between or adjacent to boring locations may be encountered.
- 3. Terms used for describing soils according to their texture or grain size distribution are in accordance with the Unified Soil Classification System.

Standard Penetration Test – Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6.0 inches to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and performing the test are recorded for each 6 inches of penetration on the drill log. The field "N" Value (N_f) can be obtained by $\frac{6}{6}$

adding the bottom two numbers for example: $\frac{6}{8-9} \Rightarrow 8+9 = 17blows / ft$. The "N" Value corrected to 60%

efficiency (N_{60}) can be obtained by multiplying N_f by the hammer correction factor published on the boring log.

ROCK CORE PHOTO

Job No.: 040792 Job Name: Hwy. 45 Strs. & Apprs. (S)

Station and Offset, ft: Sta. 109+31, 17 Rt. (Boring 1 School House Branch) Depth, ft: 9.1 - 21.3

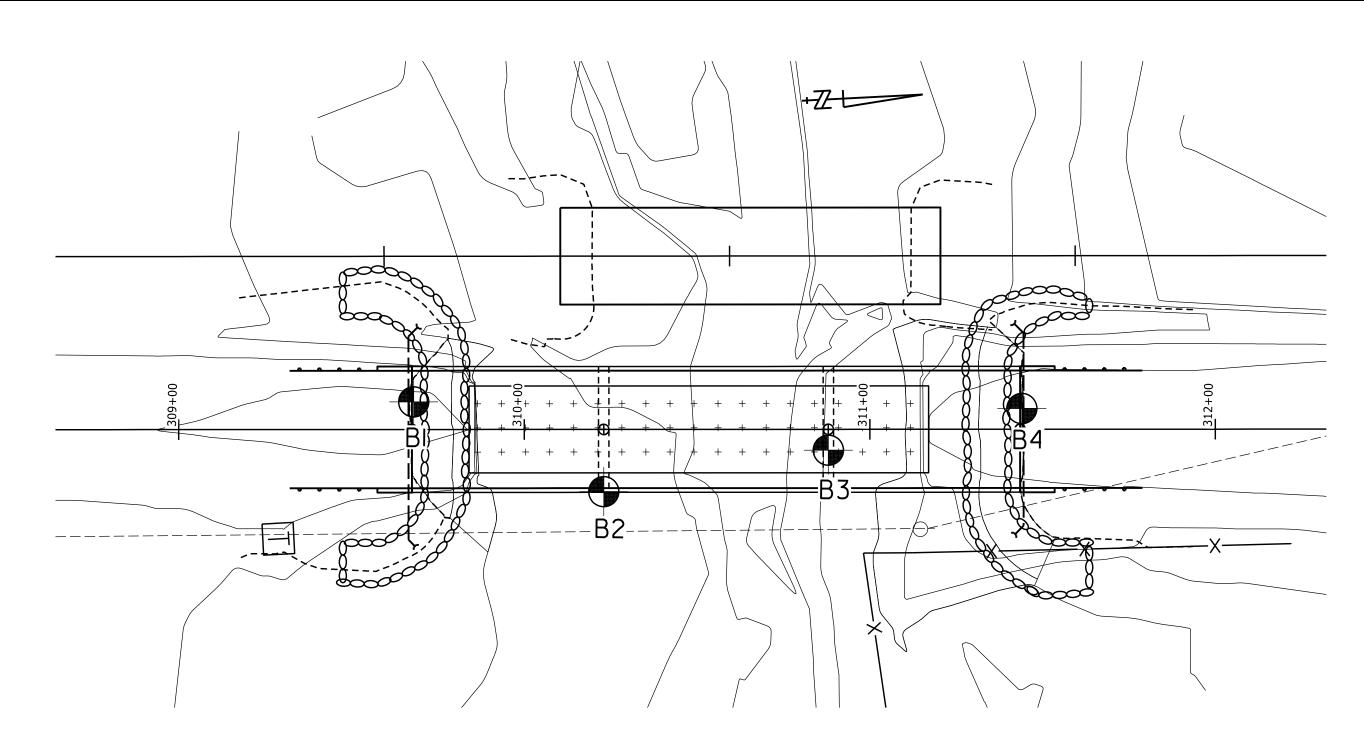
Station and Offset, ft: Sta. 109+31, 17 Rt. (Boring 1 School House Branch) Depth, ft: 21.3 - 31.3

Job No.: 040792 Job Name: Hwy. 45 Strs. & Apprs. (S)

Station and Offset, ft: Sta. 109+31, 17 Rt. (Boring 1 School House Branch) Depth, ft: 31.3 - 36.3

Station and Offset, ft: Sta. 109+77.5, 18 Rt. (Boring 2 School House Branch) Depth, ft: 10.8-22.0

Station and Offset, ft: Sta. 109+77.5, 18 Rt. (Boring 2 School House Branch) Depth, ft: 22.0-32.0


Station and Offset, ft: Sta. 111+19, C.L. (Boring 4 School House Branch) Depth, ft: 5.0-15.0

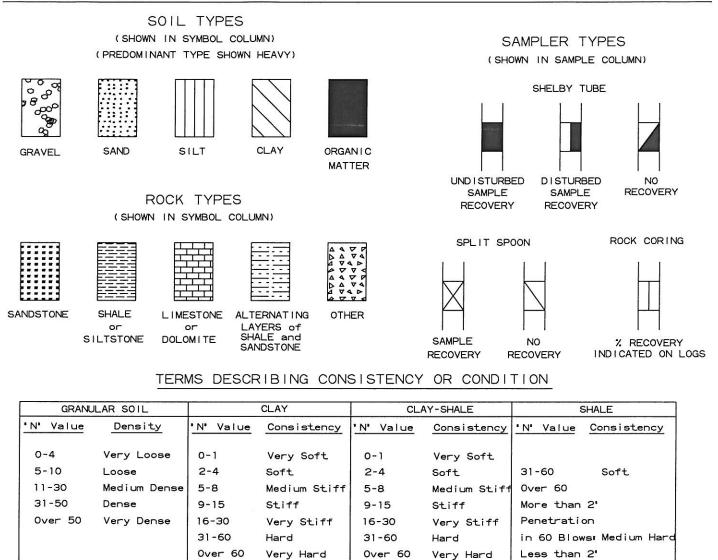
Station and Offset, ft: Sta. 111+19, C.L. (Boring 4 School House Branch) Depth, ft: 15.0-20.0

Attachment B

JOHNSON BRANCH BORINGS										
BORING	STATION	OFFSET	ELEVATION							
B1	309+68	8 LT	530.90							
B2	310+23	18 RT	523.94							
B3	310+88	6 RT	522.14							
B4	311+44	6 LT	531.20							

1	FED. ROAD DIST. NO.	STATE	STATE FED. AID PROJ. NO.		TOTAL SHEETS						
	6	AR									
	JOB N	0.	040792								
	PLAN OF BORINGS AND TEST PITS										

ſ	PLAN OF BORINGS AND TEST PITS									
	HWY. 45 STRS. & APPRS. (S) ROUTE 45, SECTION 1 SEBASTIAN COUNTY JOHNSON BRANCH									
	JOB NO. 040792 SHEET 1/1									


			DEPARTMENT OF TRANSPORTATI DIVISION - GEOTECHNICAL SEC.	ON								on Br	BORING NO. 1 Johnson Branch PAGE 1 OF 1								
JOB N		0	040792 Sebastion County				DAT		•			23, 2	2021		-						
JOB N	AME	:	Hwy 45 Strs. & Apprs. (S)					E OF I	ORILL			- ,									
			Route 45, Section 01				Н	ollow	v Ste	m Au	ger	- Diar	nond Co	ore							
STAT	ION:		309+68				EQU	EQUIPMENT: CME 45B													
LOCA			8' Left of Construction Centerline																		
			Anthony Nicholson				HAN	AMER	CORI	RECTIO	ON F.	ACTOR	: 1	.47	-						
	PLE		N DEPTH: 32											-							
D E	s	S A										UNG UI	$\mathbf{\tilde{s}}$								
P	Y	M	DESCRIPTION OF MATERIAL									ASS	Mo Zi	%	%						
Т	M B	Ρ	DESCRIPTION OF MATERIAL	SOIL GROUP								T P 00 S	. OF BLOV PER 6-IN.	T C	R Q						
н	Ő	L			M	DISTU	JRE CC	NTEN	NT (%	6) •		RCENT PASSIN NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	R	Ď						
FT.	L	E S	SURFACE ELEVATION: 530.9					RE CONTENT (%) • LL BEKCENT by NO. OF BLOWS NO. OF BLO													
		-				20	30 4	<u>+0 50</u>	0 60	0 70											
<u> </u>																					
<u> </u>																					
 5			Maint Marchana David Ola																		
<u> </u>			Moist, Very Loose, Brown Clayey Sand with Some Gravel				_						2								
<u> </u>		Х	Sand with Some Graver										3								
<u> </u>		$ \longrightarrow $																			
<u> </u>																					
10																					
10				-			_						2								
<u> </u>		Х	Moist, Very Stiff, Brown Clay			•							7-9								
<u> </u>		\square	Dry, Dense, Dark Gray Shale	-									8								
<u> </u>	888	Х	_ Fragments										21-29								
 15				1																	
15														8	0						
<u> </u>	X		Sandy Clay with Rock Fragments																		
<u> </u>	XX																				
20	\sim													30	24						
				_											21						
<u> </u>	薑蕈																				
<u> </u>			SHALE WITH OCCASIONAL																		
			SANDSTONE PARTINGS AND																		
25	薑		SEAMS - Slightly Weathered,											99	96						
20			Medium Hard, Dark Gray		\vdash		_														
┣─ ─																					
┣─ ─				1										\vdash							
┣ ─																					
30			SHALE - Unweathered, Medium											100	100						
			Hard, Dark Gray								\neg										
┣ ─																					
┣ ─			Boring Terminated								\neg			\vdash							
┣ ─																					
35																					
REM	ARK	S:		1							[1	l						

	RKANSAS DEPARTMENT OF TRANSPORTATION ATERIALS DIVISION - GEOTECHNICAL SEC.							BOF PAC		NO. 1	2 Jo OF		son Br	anch		
JOB N			040792 Sebastion County					DAT		•	01		e 13, 2	2021		_
JOB N	AME	:	Hwy 45 Strs. & Apprs. (S)					TYP	EOFI	DRILI	LING:		,			
			Route 45, Section 01					H	ollov	v Ste	m A	uger	- Diar	nond Co	re	
STATI	ON:		310+23					EQU	IPME	NT:			CME	E 45B		
LOCA			18' Right of Construction Centerline													
			Anthony Nicholson					HAM	IMER	COR	RECT	ION I	FACTOR	R: 1	.47	_
	PLE	-	N DEPTH: 20.9												-	-
D E	S	S											ŊN.	S		
P	Y	A M											ASSI EVE	N.N.	%	%
Ť	M B	P	DESCRIPTION OF MATERIAL	SOIL GROUP									T P/ 0 SI	. OF BLOV PER 6-IN.	T C	R Q
н	0	L		GROOT	l N	AOIST	TURI	PERCENT PASSING NO. 200 SIEVE					0. 2(NO. OF BLOWS PER 6-IN.	R	D
FT.	Ĺ	E S			PL	+		+ LL					N. N.	NC		
ГI. ————————————————————————————————————		3	SURFACE ELEVATION: 523.9		1	0 2	0 3	04	05	06	07	0	H		-	
5	<i>1111</i>			4										26	1	
\vdash –		Ą	SHALE - Highly Weathered,		•									60-40		
			Medium Hard, Brown and Gray SHALE - Weathered With Highly	-										(8")		
			Weathered Layers, Medium Hard													
			\with Soft Layers, Brown and Gray SHALE - Unweathered, Medium												86	54
10																
			Hard, Dark Gray	-											<u> </u>	
			SHALE - Unweathered, Medium Hard, Occasional Fractures, Dark												99	80
			Gray												100	
15			,		<u> </u>											
				-												
			SHALE - Unweathered, Medium												94	94
			Hard, Dark Gray												1	
20																
			Boring Terminated													
<u> </u>															1	
$\vdash \dashv$															1	
															1	
25															1	
$\vdash \dashv$															1	
															1	
\vdash –															1	
30															1	
- 30															1	
\vdash \dashv															1	
															1	
\vdash –															1	
 35															1	
REM	ARK	 S∙													1	
	TATA A	Ο.														

	RKANSAS DEPARTMENT OF TRANSPORTATION IATERIALS DIVISION - GEOTECHNICAL SEC.								BORING NO. 3 Johnson Branch PAGE 1 OF 1								
JOB N	0.		040792 Sebastion County				DA	TE:			Jul	y 20, 2	021		-		
JOB N.	AME	:	Hwy 45 Strs. & Apprs. (S) Route 45, Section 01					PE OF Hollov				- Diar	nond Co	re			
STATI			310+88					UIPME			U	CME					
	LOCATION: 6' Left of Construction Centerline LOGGED BY: Anthony Nicholson									HAMMER CORRECTION FACTOR: 1.47							
			N DEPTH: 22.3				111		con	RECT		meron	. 1	,	_		
D E P T H	SYMBOL	S A M P L E	DESCRIPTION OF MATERIAL	SOIL GROUP			URE C			%) •		PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D		
FT.		S	SURFACE ELEVATION: 522.1		10	20	30	40 5	<u>60</u>	0 70)	PI					
 5 																	
<u> </u>		X	SHALE - Slighly Weathered, _Medium Hard, Gray										30 (2")				
 				-										99	99		
 15 			SHALE - Unweathered, Medium Hard Dark Gray											100	100		
 														92	90		
 25 30 35			Boring Terminated														
REM	ARK	S:															

	S DEPARTMENT OF TRANSPORTATION S DIVISION - GEOTECHNICAL SEC.	BORING NO. 4 Johnson Branch PAGE 1 OF 1						
JOB NO.	040792 Sebastion County	DATE: June 29, 2021						
JOB NAME:	Hwy 45 Strs. & Apprs. (S)	TYPE OF DRILLING:						
	Route 45, Section 01	Hollow Stem Auger - Diamond Core						
STATION:	311+43.5 6' Left of Construction Centerline	EQUIPMENT: CME 45B						
LOCATION:	Anthony Nicholson	HAMMER CORRECTION FACTOR: 1.47						
	ON DEPTH: 27							
D S	8	ġ						
		D C C CENT PASSING NO. OF BLOWS PERCENT PASSING NO. OF BLOWS PERCENT (%) LUELUE NO. OF BLOWS PERCENT PASSING NO. OF BLOWS PERCENT PASSING						
т IVI	DESCRIPTION OF MATERIAL SOIL	TURE CONTENT (%) UNO. 200 SIEVE						
	GROUP	$FURE CONTENT (\%) \bullet \begin{bmatrix} L & 0 \\ 0 & -5 \\$						
FT.	SURFACE ELEVATION: 531.2							
— —								
— —								
— —								
—	Maist Mary Lagas Drawn Candwith							
5	Moist, Very Loose, Brown Sand with Some Shale Fragments	3						
— —								
— —								
— —								
10								
8	Dry, Very Dense, Dark Gray Shale							
	Fragments and Boulders	23-35 (8") 0 0						
	(No Recovery) SHALE WITH OCCASIONAL							
	SANDSTONE PARTINGS AND							
15	SEAMS - Weathered, Medium	94 52						
	Hard, Occasional Fractures, Dark							
	SHALE WITH OCCASIONAL							
	SANDSTONE PARTINGS AND							
— —	SEAMS - Slightly Weathered,							
20	Medium Hard, Dark Gray SHALE WITH OCCASIONAL	92 88						
— —	SANDSTONE PARTINGS AND							
	SEAMS - Unweathered, Medium							
	Gray							
	SHALE - Unweathered, Medium	100 99						
_25	Hard, Occasional Fractures, Dark							
	Boring Terminated							
30								
35								
REMARKS								

_EGEND

1. Ground water elevations indicated on boring logs represent ground water elevations at date or time shown on boring log. Absence of water surface implies that no ground water data is available but does not necessarily mean that ground water will not be encountered at locations or within the vertical reaches of these borings.

Penetration in 60 Blows¤ Hard

- 2. Borings represent subsurface conditions at their respective locations for their respective depths. Variations in conditions between or adjacent to boring locations may be encountered.
- 3. Terms used for describing soils according to their texture or grain size distribution are in accordance with the Unified Soil Classification System.

Standard Penetration Test – Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6.0 inches to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and performing the test are recorded for each 6 inches of penetration on the drill log. The field "N" Value (N_f) can be obtained by $\frac{6}{2}$

adding the bottom two numbers for example: $\frac{6}{8-9} \Rightarrow 8+9 = 17blows / ft$. The "N" Value corrected to 60%

efficiency (N_{60}) can be obtained by multiplying N_f by the hammer correction factor published on the boring log.

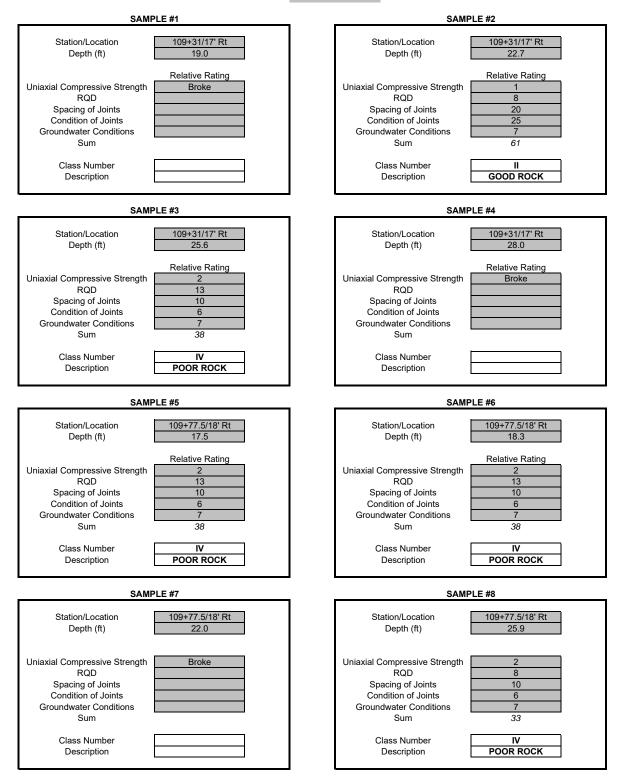
Station and Offset, ft: Sta. 309+68, 8 Lt. (Boring 1 Johnson Branch) Depth, ft: 13.7-27.0

Station and Offset, ft: Sta. 309+68, 8 Lt. (Boring 1 Johnson Branch) Depth, ft: 27.0-32.0

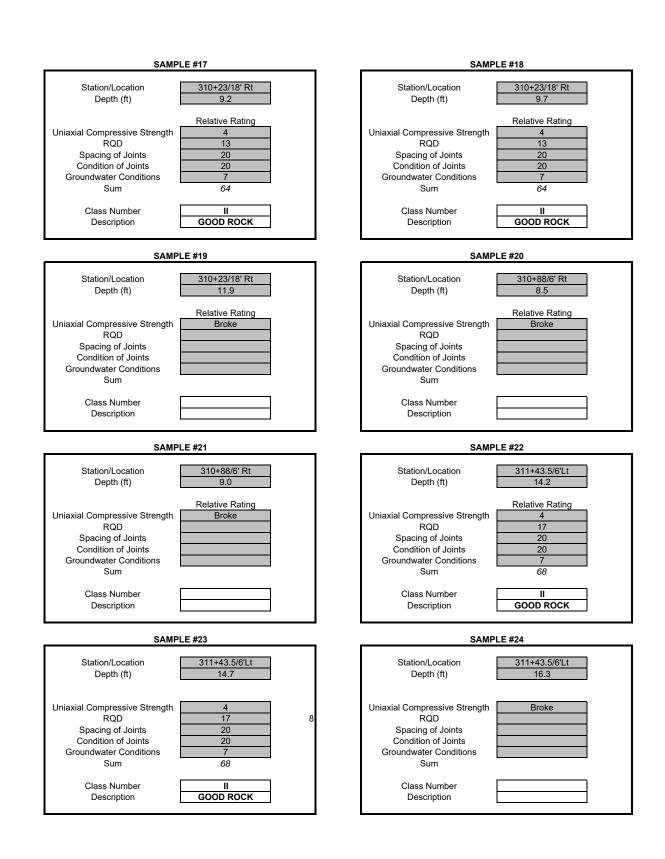
Station and Offset, ft: Sta. 311+43.5, 6 Lt. (Boring 1 Johnson Branch) Depth, ft: 12.0-23.0

Station and Offset, ft: Sta. 311+43.5, 6 Lt. (Boring 1 Johnson Branch) Depth, ft: 23.0-28.0

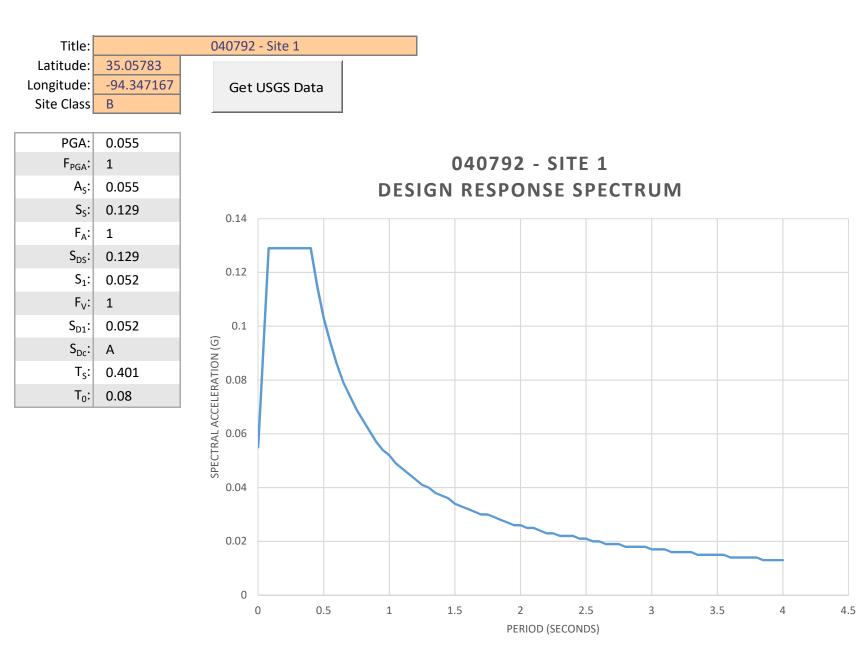
Attachment C


Rock Core Unconfined Compression Test Summary

Project Number:040792Project Name:Hwy. 45 Strs. & Apprs. (S)Date Tested:8/12/2021

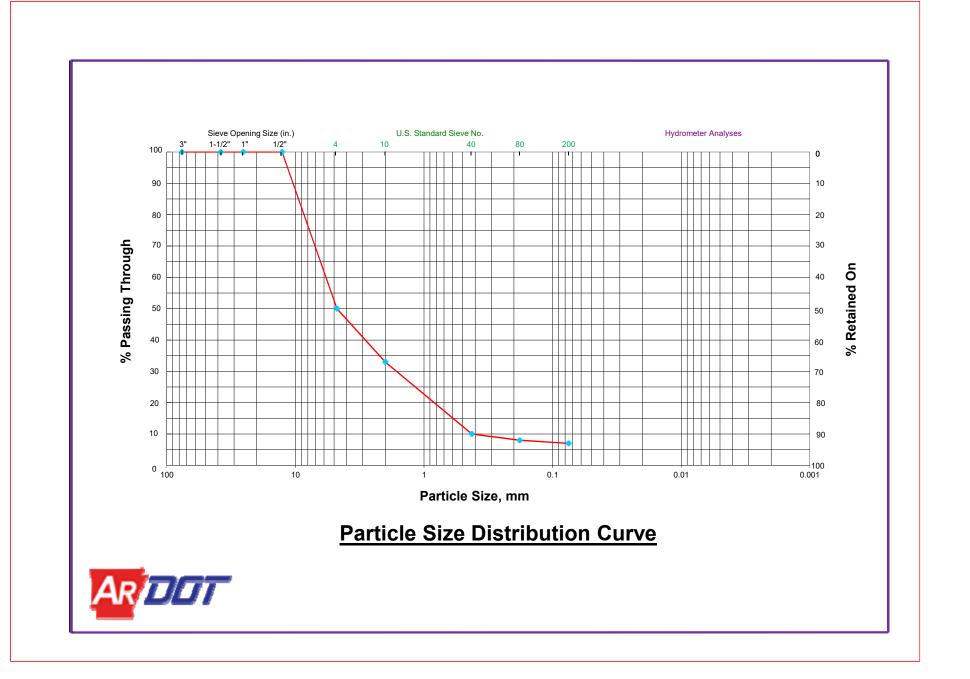

Station	Location	Sample No.	Depth (ft.)	Diameter (in)	Height (in)	Total Load (lbs.)	Correction Factor	Stress (psi)	Remarks
109+31	17' Rt.	1	19.0						Broke
109+31	17' Rt.	2	22.7	1.75	3.89	2,080		864	
109+31	17' Rt.	3	25.6	1.75	3.61	6,120		2,544	
109+31	17' Rt.	4	28.0						Broke
109+77.5	18' Rt	5	17.5	1.75	3.61	4,800		1,995	
109+77.5	18' Rt.	6	18.3	1.75	3.40	4,550		1,891	
109+77.5	18' Rt.	7	22.0						Broke
109+77.5	18' Rt.	8	25.9	1.75	3.45	4,630		1,924	
109+77.5	18' Rt.	9	30.7						Broke
111+19	CL	10	6.0	1.75	3.51	5,230		2,174	
111+19	CL	11	10.5						Broke
111+19	CL	12	11.5						Broke
111+19	CL	13	19.1	1.75	3.50	5,180		2,153	
309+67.5	8' Lt.	14	17.2	1.75	3.50	7,400		3,076	
309+67.5	8' Lt.	15	17.6						Broke
309+67.5	8' Lt.	16	22.7						Broke
310+23	18' Rt.	17	9.2	1.75	3.48	11,260		4,681	
310+23	18' Rt.	18	9.7	1.75	3.43	9,640		4,007	
310+23	18' Rt.	19	11.9						Broke
310+88	6' Rt.	20	8.5						Broke
310+88	6' Rt.	21	9.0						Broke
311+43.5	6' Lt.	22	14.2	1.75	3.50	12,010		4,993	
311+43.5	6' Lt.	23	14.7	1.75	3.50	10,330		4,294	
311+43.5	6' Lt.	24	16.3						Broke

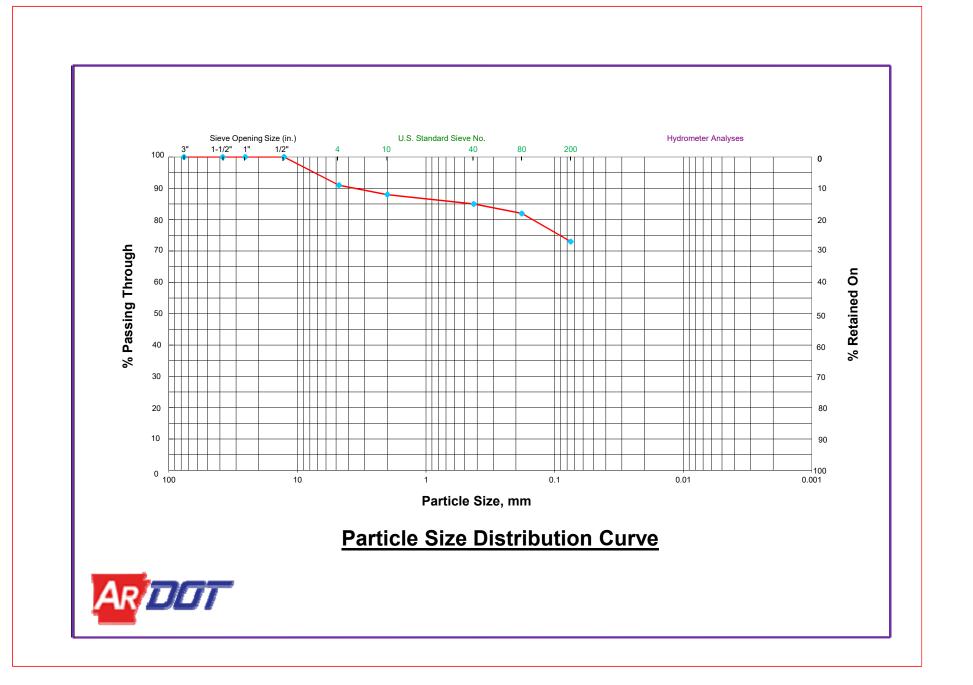
* Please note any broken samples, fractures or other characteristics of sample in Remarks.


ROCK MASS RATING SUMMARY JOB # 040792

SAM	PLE #9	SAMPLE #10							
Station/Location Depth (ft)	109+77.5/18' Rt 30.7	Station/Location111+19/CLDepth (ft)8.5							
Uniaxial Compressive Strength RQD Spacing of Joints Condition of Joints Groundwater Conditions Sum	Relative Rating Broke	Relative RatingUniaxial Compressive Strength RQD2RQD8Spacing of Joints10Condition of Joints6Groundwater Conditions7Sum33							
Class Number Description		Class Number IV Description POOR ROCK							
SAMF	PLE #11	SAMPLE #12							
Station/Location Depth (ft)	111+19/CL 10.5	Station/Location111+19/CLDepth (ft)11.5							
Uniaxial Compressive Strength RQD Spacing of Joints Condition of Joints Groundwater Conditions Sum	Relative Rating Broke	Relative Rating Uniaxial Compressive Strength RQD Broke Spacing of Joints							
Class Number Description		Class Number Description							
SAMF	PLE #13	SAMPLE #14							
SAMF Station/Location Depth (ft)	PLE #13 111+19/CL 19.1	SAMPLE #14 Station/Location 309+67.5/8'Lt Depth (ft) 17.2							
Station/Location	111+19/CL	Station/Location 309+67.5/8'Lt							
Station/Location Depth (ft) Uniaxial Compressive Strength RQD Spacing of Joints Condition of Joints Groundwater Conditions	111+19/CL 19.1 Relative Rating 2 13 10 6 7	Station/Location Depth (ft)309+67.5/8'Lt 17.2Uniaxial Compressive Strength RQD2 17 30 20Spacing of Joints Condition of Joints Groundwater Conditions30 7							
Station/Location Depth (ft) Uniaxial Compressive Strength RQD Spacing of Joints Condition of Joints Groundwater Conditions Sum Class Number Description	111+19/CL 19.1 Relative Rating 2 13 10 6 7 38	Station/Location Depth (ft)309+67.5/8'Lt 17.2Uniaxial Compressive Strength RQDRelative RatingUniaxial Compressive Strength RQD2 17Spacing of Joints Condition of Joints Sum30 25 7Groundwater Conditions Sum7 81Class NumberI							
Station/Location Depth (ft) Uniaxial Compressive Strength RQD Spacing of Joints Condition of Joints Groundwater Conditions Sum Class Number Description	111+19/СL 19.1 Relative Rating 2 13 10 6 7 38 IV РООК КОСК	Station/Location Depth (ft)309+67.5/8'Lt 17.2Uniaxial Compressive Strength RQD2Spacing of Joints Condition of Joints Groundwater Conditions Sum30Class Number Description1VERY GOOD ROCK							
Station/Location Depth (ft) Uniaxial Compressive Strength RQD Spacing of Joints Condition of Joints Groundwater Conditions Sum Class Number Description SAME Station/Location	111+19/CL 19.1 Relative Rating 2 13 10 6 7 38 IV POOR ROCK	Station/Location 309+67.5/8'Lt Depth (ft) 17.2 Relative Rating Uniaxial Compressive Strength 2 RQD 17 Spacing of Joints 30 Condition of Joints 25 Groundwater Conditions 7 Sum 81 Class Number I Description VERY GOOD ROCK Station/Location 309+67.5/8'Lt							

Attachment D


Title:		040792 - S	ite 2							
Latitude:	35.103252		1							
Longitude:	-94.367475	Get US	GS Data							
Site Class	В									
PGA:	0.055				•					
F _{PGA} :	1						2 - SIT			
A _s :	0.055			DESI	GN	RESPO	ONSE S	PECTR	UM	
S _S :	0.128	0.14								
F _A :	1									
S _{DS} :	0.128	1								
S ₁ :	0.051	0.12 —								
F _v :	1		N							
S _{D1} :	0.051	0.1								
S _{Dc} :	A	(G)								
T _s :	0.402	SPECTRAL ACCELERATION (G) 90'0 80'0								
T ₀ :	0.08	80.0 EKAT								
.0.	0.00	CCEL								
		A 1 0.06								
		CTR								
		0.04			\searrow					
		0.02					~~~			
			0.5	1	1.5	;	2	2.5	3	3.5
		0 0	0.5	1	1.5	;	2	2.5	3	3.5


PERIOD (SECONDS)

4

4.5

Attachment E

