

SUBSURFACE INVESTIGATION

STATE JOB NO.	100633			
FEDERAL AID PROJECT NO.		STPF-0028(60)		
		PARAGOULD – NORTH (S)		
STATE HIGHWAY 49		SECTION	2	
N GREENE			COUNTY	

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

ARDOT.gov | IDriveArkansas.com | Scott E. Bennett, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

October 28, 2019

TO: Mr. Trinity Smith, Engineer of Roadway Design

SUBJECT: Job No. 100633 Paragould - North (S) Route 49 Section 2 Greene County

Based on soil information from projects in the surrounding area, an estimated R-Value of less than five is appropriate for pavement design.

Listed below is the additional information requested for use in developing the plans:

Asphalt Concrete Hot Mix

Asphalt Cement %	Mineral Aggregate %
5.0	95.0
4.1	95.9
3.9	96.1
	Asphalt Cement % 5.0 4.1 3.9

Denza

Michael C. Benson Materials Engineer

MCB:pt:bjj Attachment

cc: State Constr. Eng. – Master File Copy District 10 Engineer System Information and Research Div. G. C. File

ARDOT.gov IDriveArkansas.com Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

November 30, 2022

TO: Mr. Rick Ellis, Bridge Engineer

SUBJECT: Job No. 100633 Paragould-North (S) Greene County Routes 49, Section 2

Introduction

Submitted herein are the results of the subsurface investigation and geotechnical recommendations for the proposed bridges planned on Highway 49 in Greene County.

This project consists of constructing two (2) structures; one bridge to replace the existing bridge over Jacks Creek and one bridge to replace the existing bridge over Locust Creek. The bridges will be constructed at the current locations and widened to the northwest. Site 1, the new Jacks Creek Bridge will be a Single Integral W-beam unit. It will have a total length of 100 feet and an out-to-out width of 78 feet. Site 2, the new Locust Creek bridge will be three (3) span Continuous Integral W-beam units (50'-65'-50'). It will have a total length of 166 feet and an out-to-out width of 78 feet.

2-Horizontal to 1-vertical (2H:1V) end slopes and (3H:1V) side slopes are planned at West embankment on Jacks Creek and (2H:1V) on East embankment on Jacks Creek. Locust Creek is (3H:1V) side slopes. Embankment height varies from 14 feet to 15 feet on Site 1. Embankment height varies from 12 to 16 feet on Site 2. A Seismic Operational Classification of "Essential" is assigned to the two (2) replacement bridges.

Field Investigation

A subsurface investigation was requested on September 9, 2021, by Bridge Division to develop recommendations for bridge foundations and to verify the suitability of bridge abutment embankment configuration. The subsurface investigation was performed based on the plans provided to the Geotechnical Section on the date mentioned above. Ten (10) borings were requested, and four (4) borings were completed.

Site 1 subsurface conditions were investigated by two (2) borings at accessible locations. The originally planned boring locations were inaccessible due to steep banks. Borings were drilled in the existing roadway.

Similarly, Site 2 subsurface conditions were investigated by two (2) borings at accessible locations. The originally planned boring locations were inaccessible due to steep banks. Borings were drilled in the existing roadway.

The approximate locations of the borings are presented in the Plan of Borings included in Attachment A1 for Jacks Creek and Attachment A2 for Locust Creek, respectively. The borings were advanced with a CME 75 rotary drill rig using a combination of hollow-stem auger and rotary wash. The respective boring logs, showing the subsurface conditions encountered in the borings and the results of field and laboratory tests, are also included in Attachment A1 and A2,

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

immediately following the Plan of Borings. A Legend is attached after the boring logs to interpret / explain the symbols, terms, and conventions used on the logs. Standard Penetration Tests (SPT) were conducted in accordance with ASTM D1586 for field-testing and soil sampling. The correction factor for the hammer is indicated on the boring logs. Liners were not used inside the standard split-barrel samplers.

The number of blows required to drive the standard split-barrel sampler for each 6-inch increment of the total 18-inch drive were measured and recorded on the boring logs. SPT N-values are defined as the total number of blows required to advance the split barrel sampler the final 12 inches of the total 18-inch drive depth. The SPT N-values indicated on the logs are raw (uncorrected) blow counts measured in field.

Lab Investigation

All samples were brought to the Materials laboratory for further evaluation and testing. Soil samples were tested to evaluate index properties and to verify soil type and classification. Lab tests were performed on representative soil samples to determine moisture content, Atterberg limits, and / or gradation. Tested soils were classified by experienced professionals in accordance with both USCS and AASHTO soil classification systems. The laboratory test and their corresponding ASTM and / or AASHTO test methods are listed below in Table 1.

Laboratory	ASTM	AASHTO	Denotation on Logs	
Moisture Content	D2216	T 265	Solid Circle Symbol (•)	
Grain Size Analysis by Sieving	D6913	T 88	Whole Number in the "- No. 200 %" Column (e.g., 12)	
		T 89	Plus, Symbol (+) on the Right for Liquid Limit	
Atterberg Limits	D4318	4318 T 90	Plus, Symbol (+) on the Left for Plastic Limit	

 Table 1: Summary of Laboratory Tests and Methods

The particle size through which 50% of particles by weight passing, D_{50} , is summarized below in Table 2. Detailed particle size distribution curves used for D_{50} determination is included in Attachment B.

Bridge	Station	Sample Type	Location	D ₅₀ , mm
Site 1 (Jacks Creek)	150+00, 35' Lt.	Bulk	Creek Bank	3.0
Site 2 (Locust Creek)	196+20, 46' Lt.	Bulk	Creek Bank	<0.075

Table 2: Summary of D₅₀ for Scour Analysis

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

Site Conditions

<u>Site 1 – Jacks Creek</u>. The existing bridge over Jacks Creek is 31.5 feet wide (25.8 feet clear roadway) and 92 feet long and consists of three (3) steel I-beam spans supported by concrete pile bents. The existing bridge is located approximately in the same location as the proposed bridge.

<u>Site 2 – Locust Creek</u>. The existing bridge over Locust Creek is 31.5 feet wide (25.8 clear roadway) and 153 feet long and consists of five (5) steel I-beam spans supported by concrete pile bents. The existing bridge is located at approximately the same location as the proposed bridge. The end slopes of the existing bridge have riprap plating.

Both sites are in a wooded valley as well as farmland on highway 49. Jacks Creek flows from the northwest to the east. Locust Creek flows from the northwest to the southeast. Overhead power lines only parallel Site 1 on the northwest side of Highway 49. Images of both sites can be viewed in Attachment C1 for Site 1 and C2 for Site 2.

Site Geology/Generalized subsurface conditions

The project alignment is in the mapped outcrop of Quaternary terrace deposits. In general, terrace deposits consist of a complex sequence of unconsolidated gravels, sandy gravels, sands, silty sands, silts, silty clays, and clays. At 110 feet below ground level (Site 1), the Eocene Wilcox Group (**Zone 6**) was encountered. The Wilcox Group at Site 1 is composed of dark brown silty clay, sandy clay, and silt with sand. Some samples in this zone contained a trace of lignite. The formation representing the Wilcox Group at this site may be the Flour Island Formation. In **Zone 4** of Site 2 the Wilcox Group was encountered. The Wilcox Group at Site 2 consists of light gray silt to silty fine sand. This zone had several cemented seams. The formation representing the Wilcox Group at site may be the Formation.

See generalized subsurface profile in Attachment D1 for Site 1 and Attachment D2 for Site 2 for more understanding of zones.

Seismic Conditions

Considering the average subsurface conditions as revealed by the borings, a Seismic Site Class E (Soft Soil profile) is calculated for the project sites. Utilizing the **Seismic Site Class E** and the approximate GPS coordinates of the project sites, the following design peak ground acceleration coefficients (A_S), design short-period spectral acceleration coefficients (S_{DS}), as well as design long-period spectral acceleration coefficients (S_{DS}), as well coefficients are summarized in Table 3a for Site 1 and Table 3b for Site 2. Design Response Spectrum is presented in Attachment E1 for Site 1 and Attachment E2 for Site 2.

ARDOT.gov IDriveArkansas.com Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

Table 3a: Summary of Design Ground Motion Acceleration Response Coefficients

Jacks Creek (Site 1)					
Acceleration Coefficient Value (g)					
A _s (Site PGA)	0.479				
S _{DS} (0.2 sec)	0.908				
S _{D1} (1 sec)	0.733				

Table 3b: Summary of Design Ground Motion Acceleration Response Coefficients

Locust Creek (Site 2)				
Acceleration Coefficient Value (g)				
A _S (Site PGA)	0.480			
S _{DS} (0.2 sec)	0.907			
S _{D1} (1 sec)	0.734			

For the design long-period spectral acceleration coefficient (S_{D1}) of 0.733 for Site 1 and (S_{D1}) of 0.734 for Site 2, a **Seismic Performance Zone 4** is considered applicable for both sites.

Liquefaction potential of the subsurface soils were evaluated based on the results of the borings and utilizing the current Microsoft Excel[®] spreadsheet developed by University of Arkansas for ARDOT. An Earthquake Moment Magnitude (M_W) of 7.5 and the design peak ground acceleration coefficient (As) of 0.479 for Site 1 and 0.480 for Site 2 were modelled in the analysis. The results of Boring 2 for Site 1 and Boring 4 for Site 2 were chosen for the liquefaction analyses due to more abundant laboratory data performed for these borings. These borings were advanced more than 100 ft. and located near the bridge ends of the proposed alignments. The results of liquefaction analyses are presented in Attachment F1 for Site 1 and Attachment F2 for Site 2, respectively as a plot of calculated factor of safety against liquefaction versus depth below ground surface at the boring location. The analyses indicated **Potential of Liquefaction** for both project sites.

Embankment Configuration

<u>Settlement Potential-</u> The foundation soils in the widening section mainly comprise of granular silts and sand. It is anticipated that most of the settlement will be elastic settlement and will take place shortly after embankment loading is applied. Long-Term consolidation settlement is expected to be minimal.

<u>Embankment Analysis-</u> Stability analyses have been performed to evaluate the design abutment configuration. Slope stability analyses were performed utilizing a commercial computer program Slide2 (Version 2021) developed by RocScience. Spencer analysis method was utilized to analyze the east and west abutment. Three (3) general loading conditions were analyzed with respect to slope stability: Short Term / End of Construction Condition, Long Term Condition, and

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

Seismic / Pseudo-Static Condition. A horizontal acceleration coefficient (K_h) of 0.2395 (0.479 A_s /g) for Site 1 and (K_h) of 0.24 (0.480 A_s /g) for Site 2 were utilized for analysis of the Seismic / Psuedo-Satic Condition. A surcharge of 250 psf is included to model the live load under long term condition.

Results of the Analyses are stated in Table 4a and 4b. The Analyses images are shown in Attachment G1 for Site 1 and Attachment G2 for Site 2.

Slope	Loading Condition	Calculated Min. F.S.	Recommended Min. F.S.
2H:1V End Slope –	Short Term	2.26	1.3
Bent 1 (West	Long Term	1.40	1.5
Embankment)	Seismic (k _h = 0.2395)	1.13	1.1
2H:1V End Slope –	Short Term	1.72	1.3
Bent 2 (East	Long Term	1.39	1.5
Embankment)	Seismic (k _h = 0.2395)	0.82	1.1

Table 4a: Results of Slope Stability analyses for Site 1 – Jacks Creek

Table 4b. Results of Slope Stability Analyses for Site 2- Locust Creek

Slope	Loading Condition	Calculated Min. F.S.	Recommended Min. F.S.
2H:1V End Slope –	Short Term	1.89	1.3
Bent 1 (West	Long Term	1.49	1.5
Embankment	Seismic ($k_h = 0.24$)	0.97	1.1
2H:1V End Slope –	Short Term	2.49	1.3
Bent 4 (East	Long Term	1.60	1.5
Embankment)	Seismic ($k_h = 0.24$)	1.00	1.1

Ground Improvements

Results of the analyses show that plan configuration for 2H: 1V end slopes is not suitable. In addition, analyses indicate potential of liquefaction. Ground improvements are necessary to mitigate the liquefaction potential and to satisfy the minimum factors of safety. Timber piles are recommended for mitigation. Reinforcing embankment using geosynthetics is not a viable option due to the widened embankment comprised of existing embankment and new embankment.

<u>Timber Piles-</u> To mitigate the liquefaction potential and to improve embankment stability, timber compaction piles are recommended for ground densification and reinforcement. Materials and construction of timber compaction piles should conform to the requirements specified in the project Special Provision "Timber Piling for Soil Densification" (Attachment H) and the recommendations provided in this geotechnical report.

Additional slope analyses have been performed to aid in design of timber compaction piles (pile strength, dimensions, layout, limits, etc.). Based on the results of the slope stability analyses, the following pile design parameters are recommended (see Table 5a for Site 1 and Table 5b for

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

Site 2) to achieve embankment stability. Ground improvements design and slope stability analyses have been performed based on the assumed use of South Yellow Pile or Douglas Fir compaction piles. A rectangular pile layout is recommended. Recommended limits of the pile reinforcements are shown on the Timber Compaction Pile Layout included in Attachment I1 for Site 1 and I2 for Site 2.

 Table 5a: Recommended Design Parameters for Timber Compaction Piles – Jacks Creek

Abutment (Bent No.)	Min. Pile Length, ft.	Min. Butt Diameter, in.	Min. Tip Diameter, in.	Longitudinal Spacing, ft.	Transverse Spacing, ft.
South Abutment (Bent 1)	45	13	6	6	6
North Abutment (Bent 2)	45	13	6	6	6

 Table 5b: Recommended Design Parameters for Timber Compaction Piles – Locust Creek

Abutment (Bent No.)	Min. Pile Length, ft.	Min. Butt Diameter, in.	Min. Tip Diameter, in.	Longitudinal Spacing, ft.	Transverse Spacing, ft.
South Abutment (Bent 1)	45	13	6	8	8
North Abutment (Bent 4)	45	13	6	8	8

Slope stability has been performed on the more critical embankment configuration at East abutment (Bent 2) of the Jacks Creek site. At the Locust Creek site, the more critical East abutment (Bent 4) was analyzed. The slope stability analysis with improvements is summarized below in Table 6a for Site 1 and Table 6b for Site 2 below. Detailed graphic plots of the slope stability analyses are included in Attachment J1 for Site 1 and J2 for Site 2.

 Table 6a: Slope Stability of Embankments on Improved Ground – Jacks Creek

Slope	Loading Condition	Calculated Min. F.S.	Recommended Min. F.S.
2H:1V End Slope – Bent 2	Short Term	Not Analyzed	1.3
	Long Term	1.63	1.5
	Seismic (k _h = 0.2395)	1.10	1.1
24.11/ Side Slane	Short Term	Not Analyzed	1.3
Bent 2 (Right Side)	Long Term	1.52	1.5
	Seismic (k _h = 0.2395)	1.28	1.1

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

Slope	Loading Condition	Calculated Min. F.S.	Recommended Min. F.S.
24:11/ End Slana	Short Term	Not Analyzed	1.3
Bent 4	Long Term	1.60	1.5
	Seismic ($k_h = 0.24$)	1.12	1.1
3H:1V Side Slope – Bent 4 (Right Side)	Short Term	Not Analyzed	1.3
	Long Term	3.17	1.5
	Seismic ($k_h = 0.24$)	1.68	1.1

Table 6b: Slope Stability of Embankments on Improved Ground – Locust Creek

The results summarized in Table 6 indicate the plan embankment configuration is suitable with respect to the recommended ground improvements. The conditions "Not Analyzed" were due to the planned configuration being acceptable before improvements were made.

Foundation Recommendations

<u>Axial Capacities</u>- Based on the request made by Bridge Division, it is understood that both sites will be concrete filled steel shell piles to support the foundation loads. It is also understood 16-in.diameter piles are tentatively planned at the abutments to achieve the design nominal axial compression pile capacity of 130 to 195 tons per pile. At the intermediate bents, design nominal axial compression pile capacity of 235 tons per pile is required and 24-in.-diameter piles are considered. The Geotechnical Section recommends 18" piles for both abutments at each site and 24" piles for intermediate bents at Locust Creek.

Nominal axial capacities (compression and uplift) vs. pile tip penetration / elevation curves for single, 18-Inch and 24-inch diameter concrete filled steel shell piles are provided in Attachment K1 for Site 1 and Attachment K2 for Site 2, respectively. For single, isolated foundations, a resistance factor (φ_{stat}) of 0.45 is recommended or calculating factored compression resistance and a resistance factor (φ_{up}) of 0.35 is recommended for determining factored uplift resistance. Tables 7a and 7b indicate the recommended pile length for both job sites.

Bent No.	Required Nominal Axial Resistance, Tons	Pile Diameter, Inch	Recommended Pile Length, Feet
1	195	18	70
2	195	18	70

Table 7a: Recommended Pile Length / Penetration- Jacks Creek

Table 7b: Recommended Pile Length / Penetration- Locust Creek

Bent No.	Required Nominal Axial Resistance, Tons	Pile Diameter, Inch	Recommended Pile Length, Feet
1	130	18	55
2	235	24	60
3	235	24	70
4	130	18	70

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

 MATERIALS DIVISION

 11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

Considering the construction sequence of piles at the abutments being driven after the embankment is in place, down drag on piling is expected to be negligible. In addition, these capacities are determined for piles driven to the required penetration / elevation. If jetting or other methods are used to assist in advancing the piles, re-evaluation of these pile capacities will be warranted.

The piles are expected to be tipped in the predominantly sandy / silty soils that are likely to be liquefied during driving with considerable resistance loss at the end of initial drive. If the required nominal bearing capacity has not been obtained when top of piles is 6 inches above plan grade, considerations may be given to restriking the piles with a warmed-up hammer after a minimum 24-hour waiting time.

<u>Geotechnical Input Parameters for Lateral Load Analysis using Lpile</u> - Lateral load analysis will be performed by the structural engineer using commercial computer program Lpile. The geotechnical input parameters are in Attachment L1 for Site 1 and L2 for Site 2.

<u>Pile Installation</u> - Piles should be installed in accordance with Section 805 (2014 Edition). Prior to piling, hammer systems furnished by the Contractor should be evaluated and approved by the Engineer.

Prebore is not anicipated to be required. Water jetting, vibrating, or other means for the purpose of assisting pile penetration are generally not expected. If warranted by specific subsurface conditions, the use of water jetting or virbrating would require review and approval by the Engineer. In addition, the final 5 feet of pile penetratin should be achieved by driving.

Piling should be observed and recorded by the Engineer. Test piles are not required, but the contractor may pursue for information purposes. Nominal bearing capacity should be determined in accordance with Subsection 805.09(b), "Method B- Wave Equation Analysis (WEAP)".

If there are any questions concerning these recommendations, please contact the Geotechnical Section.

Paul Tinsley Materials Engineer

PT:yz:mbb:cs cc: State Construction Engineer District 10 Engineer G. C. File Attachment A1

ARK		AS		ON				BORI	NG NO.	1 Ja	acks	Cree	k		
		ALS	DIVISION - GEOTECHNICAL SECTI	ON				PAGE	2 1	OF	4	1 1 0	0 2022		-
JOB N	IO. IAME		Paragould North (S)					DATE:		JU	ne 21	and 2	8, 2022		
JOB N	AME	.:	Paragoulu - North (S) Route 49, Section 2					Hol	OF DRIL	LING:	11001	Pote	ry Wash		
STAT	ION		149+05					FOLIP	MENT.		uger	- Kota CM	E 75		
LOCA	TION.	I:	25' Right of Construction Centerline					LQUII	MLINI.			Civil	L 75		
LOGG	ED B	Y: /	Anthony Nicholson					HAMN	IER COF	RECT	ION I	FACTOR	.: N	/A	
COM	PLE	TIOI	N DEPTH: 121.5												-
D E P T H	S Y M B O L	S A M P L E S	DESCRIPTION OF MATERIAL	SOIL GROUP	PL	MOIS	TURI	E CON	TENT (%)	• LL	PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D
			Asphalt			02	20 3	0 40	50 0	<u>50 7</u>	0				
 5 		\times	Moist, Medium Stiff, Brown and Gray Silty Clay				•						2 3-3		
 		\times	Wet, Very Loose, Brown and Gray Silt				•						<u>3</u> 2-2		
 		\times	Wet, Medium Dense, Brown and Gray Silt										 5-10		
 25		\times	Wet, Loose, Brown and Gray Silt with Sand										<u>2</u> <u>3-4</u>		
 		\times	Wet, Medium Dense, Brown and Gray Sandy Silt										<u>5</u> 6-8		
 			Wet, Very Loose, Dark Gray Silt										<u> </u>		
REM	ARK	S:													

		SAS	DEPARTMENT OF TRANSPORTATI					BOR	ING	NO.	1 Ja	acks	Cree	k		
IOB N	0	AL3	100633 Greene County					PAG	Е 	2	UF Im	4 ne 21	1 and 2	8 2022		-
JOB N	O. AMI	Ξ:	Paragould - North (S)					TYPE	 E OF I	ORILI	LING:	110 2	r und 2	0,2022		
			Route 49, Section 2					Ho	ollov	v Ste	m A	uger	- Rota	ry Wash		
STATI	ON:		149+05					EQUI	IPME	NT:		-	CM	E 75		
LOCA	TIOI	N:	25' Right of Construction Centerline													
LOGG	ED I	3Y: /	Anthony Nicholson					HAM	MER	COR	RECT	'ION I	FACTOR	.: N	/A	_
COM	PLE	TIO	N DEPTH: 121.5	1												
D	s	S											Ŋ N U	S		
P	Y	M											ASSI	N.N	%	%
Т	M R	P	DESCRIPTION OF MATERIAL	GROUP									1T P. 00 SI	F BI R 6-]	T C	R O
Н	Ö				1	MOIS	TUR	E CO	NTEI	NT (9	6)	•	CEN 0.2	0.0 PE	R	Ď
FT	L	S	SURFACE ELEVATION: 285.6		PL	H		0 4		0 6	_	LL	PER	ž		
							20 3	0 4	0 3	0 6	0 /	0		2		
		$ \Delta$												2-3		
			Wet Loose Dark Grav Silt													
40																
				1												
		$\mid \land$												1-3		
		а а	Wet, Very Loose, Dark Gray Silt													
45																
														<u> </u>		
		\vdash	Wet Loose Dark Gray Silt with													
			Some Organic Matter (Wood)													
			Ç (
50				-										2		
		X												3-5		
			Wet, Loose, Dark Gray Silt with													
			Some Organic Matter (Wood)													
- 55				-	<u> </u>									1		
		\square												5-4		
			Wet, Loose, Dark Gray Silt													
60																
]										1		
		ert	Wat Vand and Dark Groups											1-1		
			wet, very Loose, Dark Gray Silt with Trace Organic Matter (Wood)													
65				4	<u> </u>									Л		
			Wet, Loose, Grav Silty Sand													
<u> </u>				1												
<u> </u>																
/0 DEM		(Q.														
	-\I\I	\O .														

ARK		AS		ON				BOF	RING	NO.	1 Ja	acks	Cree	k		
		4LS	100622 Croope County	UN				PAC	iE F	3	OF	4	1 on 1 0	00 2022		-
JOB N	U. AME		Paragould - North (S)					DAT	E:	י זי מר	Ju	ne 2	i and 2	20, 2022		
JOB N	AME	.:	Route 49 Section 2					ПҮР	ollou	JRILI v Sta	LING:	11000	• Pote	ry Wash		
STATI	ON-		149+05					FOU	IPME	NT.	лп А	ugel	CM	ну wash Е 75	L	
LOCA	TION	1.	25' Right of Construction Centerline					EQU	IF IVIL:	N1.			CIVI	L 13		
LOGG	ED B	Y: A	Anthony Nicholson					НАМ	IMER	COR	RECT	'ION I	FACTOR	e: N	[/A	
COM	PLE	TIOI	N DEPTH: 121.5													-
D E P T H	S Y M B O	S A M P L	DESCRIPTION OF MATERIAL	SOIL GROUP	1	MOIS	STUR	E CO	NTEI	NT (9	%)	•	CENT PASSING D. 200 SIEVE). OF BLOWS PER 6-IN.	% T C R	% R Q D
FT	Ĺ	ES			PL	┣—					—	LL	DER(ž		
		3	SURFACE ELEVATION: 285.6		1	0 2	<u>20 3</u>	0 4	0 5	06	07	0	H	1/		
 		X	Wet, Medium Dense, Brown Sand with Silt and Some Gravel											16-14		
/5														12		
		\bigtriangleup	Wet, Dense, Brown Sand with Silt											19-16		
 	6	\times	Wet, Dense, Reddish Brown Sand with Silt and Gravel											18 20-27		
 90		\times	Wet, Loose, Dark Gray Silt	-										 4-5		
 95		\times	Wet, Medium Dense, Dark Gray Silt	-										 7-5		
			Wet, Loose, Dark Gray Silt with Some Organic Matter (Wood)	-										0 2-3		
		X												14 30-35		
 			Wet, Very Dense, Brown Sand with Silt and Some Gravel													
REM	ARK	S:														

ARK	ANS	AS	DEPARTMENT OF TRANSPORTATI	ON				BOR	ING	NO.	1 Ja	acks	Cree	k		
MAT	ERIA	ALS	DIVISION - GEOTECHNICAL SECTI	ON				PAG	E	4	OF	4				-
JOB N	0.		100633 Greene County					DATI	E:		Ju	ne 2.	l and 2	28, 2022		
JOB N	AME	:	Paragould - North (S)					TYPE	EOFI	DRILI	LING:		Dete	www.Wooh		
STAT	ON		1/0+05					FOU		V SIE NT.	in A	ugei	- KOR	F 75		
	TION	ŀ	25' Right of Construction Centerline					EQU		INT.			CIVI	L 75		
LOGG	ED B	Y: A	Anthony Nicholson					HAM	IMER	COR	RECT	'ION I	FACTOR	R: N	/A	
COM	PLE	LIOI	N DEPTH: 121.5								-					-
D		S											IJ			
E	S	A											SIN VE	SW .		
P	M	M	DESCRIPTION OF MATERIAL	SOIL									PAS	3LO 5-IN	% T	% R
Н	В			GROUP									ENT 200	OF	C	Q
		E			DI N		STUR	e co.	NTE	NT (9	%) (• T T	NO.	ÑO.	ĸ	D
FT.		S	SURFACE ELEVATION: 285.6			0 2	20 3	0 4	0 5	06	0 7	0 0	PE			
		\mathbb{N}												21		
														31-27		
110													40			
		X	Moist, Very Stiff, Dark Brown Silty	SM				Н					49	7-9		
			Sand with Trace Lignite (Wilcox													
			Group)													
115				-									58	17		
		Х		-									50	39-28		
			Moist, Very Hard, Dark Brown Clay													
— —			Trace Lignite													
120																
120			Moist, Medium Dense, Dark Brown	CM									35	6		
— —		\square	Silty Sand	5101										5-8		
			Boring Terminated													
125																
130																
L _																
L _																
<u> </u>																
135																
<u> </u>																
<u> </u>																
140																
140 REM	L V V K	<u> </u>			L										L	
	r NI NIN	0.														

ARK		AS	DEPARTMENT OF TRANSPORTATIO	ON				BOR	ING	NO.	2 Ja	acks	Cree	k		
		ALS	100622 Groope County	ON				PAG	E	1	OF	4	5 and 2	1 2022		-
TOB N TOR N	ю. 14ме		Paradould - North (S)					DATE		יזקח	JUI	ne I:	o and 2	1, 2022		
JODIN		•	Route 49. Section 2					На	ollov	v Ste	m A	uger	- Diar	nond Co	re	
STAT	ION:		150+09					EQUI	IPME	NT:		8	CM	E 75		
LOCA	TION	I:	25' Right of Construction Centerline													
LOGG	ED B	Y: \$	Stanley Bates and Anthony Nicholson					HAM	MER	COR	RECT	'ION I	FACTOR	.: N	[/A	_
COM	PLE	FIOI	N DEPTH: 121.5													
D E P T H FT.	S Y M B O L	S A M P L E S	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 285.6	SOIL GROUP	PL 1	MOIS	TURI 0 3	E CO]	NTE 0 5	NT (9 0 6	6) 	LL 0	PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D
			Asphalt													
 		\times	Moist, Soft, Brown Silty Clay	- CL-ML -		ŀ							99	<u>1</u> 2-2		
<u> </u>																
10		\mathbf{N}		ML									98	5		
 			Moist, Medium Dense, Light Gray Silt											12-13		
		\mathbf{N}		ML			н						98	4		
 20		\bigtriangleup	Wet, Loose, Brown Silt	-										4-3		
	\mathbb{N}	\mathbb{N}		CL		⊦							87	2		
 25			Wet, Medium Stiff, Brown Lean Clay	-										0-0		
	ÎÌÌ	\square		SP-SM									12	9		
30			Wet, Medium Dense, Brown Poorly Graded Sand with Silt	-									0-	13-12		
L _		$ \times $		ML			н						87	6-8		
 		<u> </u>	Wet, Medium Dense, Dark Gray Silt with Some Sand and Some Organic Matter (Wood)	-												
REM	ARK	S:			-	-	. <u> </u>	I					I		-	

ARK	ANS	AS	DEPARTMENT OF TRANSPORTATI	ON			BOI	RING NO	D. 2 J	acks	Cree	k		
		ALS	DIVISION - GEOTECHNICAL SECTI	ON			PAC	<u>ж 2</u>	OF	4	5 and 0	1 2022		-
JOB N	O. AME		Paragould - North (S)				DAT	E: E OE DRI		ne I:	5 and 2	1, 2022		
JOBIN	ANIC	•	Route 49 Section 2				H	ollow S	tem A	nger	- Diar	nond Co	re	
STATI	ON:		150+09				EOU	IPMENT	:	uger	CM	E 75	10	
LOCA	TION	1:	25' Right of Construction Centerline											
LOGG	ED B	Y: \$	Stanley Bates and Anthony Nicholson				HAN	IMER CO	ORRECT	TON	FACTOR	.: N	/A	_
COM	PLE	ΓΙΟΙ	N DEPTH: 121.5											
D E P T H	S Y M B O L	S A M P L E G		SOIL GROUP	N PL	10ISTUR	E CO	NTENT	(%)	• LL	PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D
			SURFACE ELEVATION. 285.0		1	0 20 3	<u>30 4</u>	0 50	60 7	0	100	0		
	\sim	riangle		CL			╢				100	0-0		
	()		Wet, Very Soft, Dark Gray Lean											
<u> </u>	(Clay	-										
40	\sim													
		\bigtriangledown		МІ							100	0		
		\square				'						1-2		
			Wet, Very Loose, Dark Gray Silt											
				-										
45														
		\mathbb{N}		ML			4				100	0		
		\leftarrow										2-2		
				-										
50											00	1		
		X		ML		+	+1				99	2-2		
			Wet, Verv Loose, Dark Grav Silt											
			with Trace Organic Matter (Wood)	_										
55											99	0		
		igtriangleup		ML		H						1-3		
<u> </u>														
				-										
60														
		\bigtriangledown		м		<u> </u>					72	0		
		\square										0-1		
			Wet, Very Loose, Dark Gray Silt											
			with Sand	-										
65														
		\bigtriangledown		SM							26	6		
		\mapsto	Wet Medium Dense, Grov Silty		1							9-0		
L _			Sand											
				-										
70														
REW	ARK	S:												

ARK	ANS	AS	DEPARTMENT OF TRANSPORTATI	ON				BOR	ING	NO.	2 Ja	acks	Cree	k		
		ALS	DIVISION - GEOTECHNICAL SECTION	ON				PAG	E	3	OF	4	1 0	1 2022		-
JOB N	0.		100633 Greene County					DATI	E:		Jui	ne Is	$\mathbf{and}\ 2$	1, 2022		
JOB N	AME	•	Paragouid - North (S) Pouto 40, Section 2						E OF I)RILL	LING:	11000	Dier	nond Co	r 0	
ST A TI			150+00								ШA	uger	- Diai	110110 CO E 75	re	
	IUN: TION	r.	25' Right of Construction Centerline					EQU.	IPME	NI:			CM	E 73		
LOCA	ED B	Y: \$	Stanley Bates and Anthony Nicholson					нам	MER	CORI	RECT	ION F	FACTOR	. N	[/A	
COM	PLE		N DEPTH: 121.5					111 111		con		10111	neror	. 1		-
		S											7			
E P T H	S Y M B O L	A M P L E S	DESCRIPTION OF MATERIAL	SOIL GROUP	PL		TUR	E CO		NT (%	6) (PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D
												0	10	7		
 		\bigtriangleup	Wet, Medium Dense, Brown Well Graded Sand with Silt and Some Gravel	-	-									13-16		
		\mathbf{X}		SP-SM									7	11 23-22		
 			Wet, Dense, Brown Poorly Graded Sand with Silt and Trace Gravel	-												
		\times		SP-SC		F	-						7	15 18-15		
 			Wet, Dense, Brown Poorly Graded Sand with Gravel with Some Clay Layers.	-												
	\square	\mathbf{X}		CL									99	2 4-7		
 0			Moist, Stiff, Brown Lean Clay	-												
	\mathbb{N}	\mathbb{N}		CL			\vdash						99	<u>2</u> 3-3		
L _	\mathbb{N}	\vdash	Moist Medium Stiff Brown Lean													
<u> </u>	\sim		Clay													
┣ —	\sim			-												
95						<u> </u>							50	1		
┣─ ─		X		CL-ML			1						53	6-8		
 			Moist, Stiff, Brown Sandy Silty Clay with Trace Organic Matter (Wood)	-												
		\square		SP-SM									6	12		
 			Wet, Dense, Brown Silty Sand with Some Gravel	-										20-17		
REM	ARK	S:			•								1			

ARK	ANS	AS		ON				BOR	RING	NO.	2 Ja	acks	Cree	k		
		ALS	DIVISION - GEOTECHNICAL SECTI	ON				PAC	θE	4	OF	4	5 and 2	1 2022		_
JOB N	O.		Personal Morth (S)					DAT	E:		Ju	ne I:	5 and 2	21, 2022		
JOB N	AME		Route 49 Section 2					TYP		DRILI v Ste	$\Delta m \Delta$	uger	- Diar	nond Co	re	
STATI	ON.		150+09					EOU	IPME	NT.	шл	ugei	- Diai	E 75	IC .	
LOCA	TION	I:	25' Right of Construction Centerline					LQU					0101			
LOGG	ED B	Y: 5	Stanley Bates and Anthony Nicholson					HAM	IMER	COR	RECT	'ION I	FACTOR	a: N	/A	
COM	PLE	TIOI	N DEPTH: 121.5					-								
D E P T H	S Y M B O I	S A P L E	DESCRIPTION OF MATERIAL	SOIL GROUP	N PL	MOIS	TUR	E CO	NTE	NT (9	6) (• LL	ERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D
FT.	-	S	SURFACE ELEVATION: 285.6		1	0 2	20 3	<u> </u>	0 5	0 6	0 7	0	Id			
 110		\times	Wet, Very Dense, Sand with Silt and Gravel	SP-SM									5	20 31-30		
 115		\times	Moist, Medium Dense, Dark Brown Silt with Trace Lignite (Wilcox Group)	-										9-13		
		\mathbb{N}		SM				н					47	9		
			Moist, Medium Dense, Dark Brown Silty Sand	-										11-15		
120			Moist, Dense, Dark Brown Silt with	MI									85	10		
		\square	Sand											15-19		
			Boring Terminated													
125																
<u> </u>																
<u> </u>																
<u>130</u>																
<u> </u>																
<u> </u>																
135																
100																
140																
REM	ARK	S:														

_EGEND

1. Ground water elevations indicated on boring logs represent ground water elevations at date or time shown on boring log. Absence of water surface implies that no ground water data is available but does not necessarily mean that ground water will not be encountered at locations or within the vertical reaches of these borings.

Penetration in 60 Blows¤ Hard

- 2. Borings represent subsurface conditions at their respective locations for their respective depths. Variations in conditions between or adjacent to boring locations may be encountered.
- 3. Terms used for describing soils according to their texture or grain size distribution are in accordance with the Unified Soil Classification System.

Standard Penetration Test – Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6.0 inches to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and performing the test are recorded for each 6 inches of penetration on the drill log. The field "N" Value (N_f) can be obtained by $\frac{6}{2}$

adding the bottom two numbers for example: $\frac{6}{8-9} \Rightarrow 8+9 = 17blows / ft$. The "N" Value corrected to 60%

efficiency (N_{60}) can be obtained by multiplying N_f by the hammer correction factor published on the boring log.

Attachment A2

ARK		AS		ON				BOR	ING I	NO.	3 Lo	CUS	st Cree	ek		
		125	100622 Croope County	ON			_	PAG	E	1	OF	4	<u>- 14 0</u>	022		-
TOB V TOR V	ю. [аме	·.	Paradould - North (S)					DATE		TIG	INC:	Jun	e 14, 2	022		
JOP N	AME	•	Route 49 Section 2					He	llow	Ster	m A	uger	- Rota	ry Wash		
STAT	ION:		194+77					EOUI	PMEN	лт∙	11 7 1	uger	CM	E 75		
LOCA	TION	I:	23' Right of Construction Centerline					2201					0111			
LOGO	ED B	Y: \$	Stanley Bates and Carson Sloan					HAM	MER	CORF	RECT	ION F	FACTOR	: N	/A	_
COM	PLE	TIOI	N DEPTH: 105.3													_
D E P T H FT.	S Y M B O L	S A M P L E S	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 280.7	SOIL GROUP	N PL		TURE	E COP	NTEN	T (%)	•) • 		PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D
			Asphalt													
 		\times	Moist, Medium Stiff, Brown and Gray Silty Clay			•								3		
 		\times	Moist, Loose, Brown Silt			•								2 3-7		
 20		\times	Wet, Loose, Brown Silt											4-6		
 25		\times	Wet, Medium Dense, Sandy Silt											<u>10</u> 11-7		
 		\times	Wet, Loose, Brown and Gray Silty Sand with Layers of Stiff, Silty Clay											<u> </u>		
 	ARK	S:												2-1		

ARK		SA		BORING NO. 3 Locust Creek
		IAL	100622 Croope County	PAGE 2 OF 4
JOB N	0. • •	т.	Paragould North (S)	DATE: June 14, 2022
JOB N	AN	E:	Route 49 Section 2	Hollow Stem Auger - Rotary Wash
STATI	ON		194+77	FOUIPMENT: CMF 75
LOCA	TIO	N:	23' Right of Construction Centerline	
LOGG	ED	BY:	Stanley Bates and Carson Sloan	HAMMER CORRECTION FACTOR: N/A
COM	PLI	ETI	DN DEPTH: 105.3	
D	<u>د</u>	5		g
Е	S Y	A		SSIN SSIN
P T	M		DESCRIPTION OF MATERIAL SOIL	≈ states and states a
I I	В		GROUP	DOF 200F
		Ē	MOIST	$\begin{array}{c c} \text{URE CONTENT (\%)} \bullet & \begin{array}{c} \textbf{D} & \textbf{O} \\ \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{M} & \textbf{M} & \textbf{M} \\ $
FT.	L	5	SURFACE ELEVATION: 280.7	
		\square		
				2-1
40				
			vvet, very Loose, Dark Gray Slit	
45				
50				
			Wet Very Lesse Dark Croy Silt	
			with Organic Matter (Wood)	
55				
			Wet Loope Dark Croy Silt with	
			Some Organic Matter (Wood)	
60				
		$ \rangle$		
			Wet, Loose, Dark Gray Silt	
65				
		$\left \right\rangle$		
		ľ		
			Wet, Loose, Gray Sandy Silt	
70				
REM	٩R	KS:		

ARKANSAS DEPARTMENT OF TRANSPORTATION MATERIALS DIVISION - GEOTECHNICAL SECTION									ING N	0. 3 L		st Cree	ək		
		125	100633 Groepe County			PAG	<u> </u>	Ol	- 4 Iur	0 14 2	0022		-		
JOB N	ю. [амf	ŀ	Paragould - North (S)	TYPE OF DRILLING:											
			Route 49, Section 2	Hollow Stem Auger - Rotary Wash											
STAT	ION:		194+77					EQUI	PMENT	:	0	CM	E 75		
LOCA	TION	1:	23' Right of Construction Centerline												
LOGG	ED B	Y: \$	Stanley Bates and Carson Sloan					HAM	MER CO	ORREC	TION I	FACTOR	e: N	[/A	_
COM	PLE	TIOI	N DEPTH: 105.3	1											
D E P T H	S Y M B O	S A M P L	DESCRIPTION OF MATERIAL	SOIL GROUP		MOIS	TUR	E CON	JTENT	`(%)	•	CENT PASSING D. 200 SIEVE). OF BLOWS PER 6-IN.	% T C R	% R Q D
FT	Ĺ	ES			PL	⊢					LL	DER(NC		
		5	SURFACE ELEVATION. 280.7			$\begin{bmatrix} 0 & 2 \\ \end{bmatrix}$	<u>203</u>	<u>60 40</u>	50	60 7	70	-	6		
 			Wet, Medium Dense, Gray Sandy Silt										5-6		
	-		Wet, Dense, Brown and Gray Sand with Silt and Trace Gravel										<u>11</u> 17-15		
		\mathbf{X}	Wet, Medium Dense, Brown and Gray Sand with Silt and Gravel									-	10		
 			Moist, Medium Dense, Light Gray Cemented Silt (Wilcox Group)												
 		X	Moist, Very Dense, Light Gray Cemented Sand										60 (5")		
 		\times	Wet, Very Dense, Light Gray Silty Sand										50 36-60 (8")		
 	-	\times	Wet, Dense, Light Gray Silty Sand										20 24-9		
 105		\times	Wet, Very Dense, Light Gray Silty Sand										60 (5")		
REM	ARK	S:													
I															

ARK		AS				BOR	LING	NO.	3 L	ocus	st Cree	ək					
		ALS	100633 Greene County			PAG	iE E.	4	OF	4 Iun	o 14 C	0022		-			
JOB N	0. 'ame		Paragould - North (S)					TYPE OF DRILLING:									
JODIN	AIVIL	•	Route 49. Section 2					H	ollov	v Ste	em A	uger	- Rota	nry Wash			
STAT	ION:		194+77					EQUIPMENT: CME 75									
LOCA	TION	I:	23' Right of Construction Centerline														
LOGGED BY: Stanley Bates and Carson Sloan										COR	RECT	TON I	FACTOR	R: N	/A	_	
COM	PLE	ΓΙΟΙ	N DEPTH: 105.3														
D	s	S											ÐZ				
E	Y	A											SSI	SWC	%	%	
	М	P	DESCRIPTION OF MATERIAL	SOIL									r PA D S II	BL(6-II	Т	R	
Ĥ	B	Ľ		GROUP		1015	TID	E CO	NTEI	NT (0	(a)		EN]	. OF PER	C R	Q D	
		E			PL		IUK	L CO.		NI (7		LL	ERC NC	NO		_	
FT.		S	SURFACE ELEVATION: 280.7		1	<u>0</u> 2	0 3	0 4	05	06	0 7	0	P				
<u> </u>			Boring Terminated											60 (4")			
110																	
<u> </u>																	
<u> </u>																	
115																	
115																	
<u> </u>																	
<u> </u>																	
120																	
120																	
125																	
\square																	
130																	
L _																	
L _																	
L _																	
┣																	
135																	
┣ —																	
┣ —																	
┣																	
-																	
140																	
REM	AKK	5:															

ARK		AS				BOR	ING	NO.	4 Lo	ocus	st Cree	ek			
		ALS	100622 Groope Coupty	ON			PAG	E	1	OF	4	no 1 20	n n		-
JOB N	O. IAME		Paragould - North (S)				DATE		ז ווסר	INC:	Jui	le 1, 20	JZZ		
JOBIN	AWIL	•	Route 49 Section 2				H	ollov	v Ste	m A	nger	- Rota	rv Wash	1	
STAT	ION:		196+58				EOUI	IPME	NT:		ager	CM	E 75		
LOCA	TION	:	23' Right of Existing Centerline												
LOGG	ED B	Y: \$	Stanley Bates				HAM	MER	COR	RECT	'ION F	FACTOR	.: N	[/A	_
COM	PLE	ΓΙΟΙ	N DEPTH: 120.4												
D E P T H FT.	S Y M O L	S A M P L E S	DESCRIPTION OF MATERIAL SURFACE ELEVATION: 280.7	SOIL GROUP	PL	STUR	E CO]	NTE	NT (%	6) (PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D
			Asphalt					0 0			0				
		\times	Moist, Very Stiff, Gray Silty Clay	- CL-ML -		<u>⊨</u> ⊣_						96	5 7-10		
10		\bigtriangledown										97	2		
 		\bigtriangleup	Moist, Stiff, Gray Silty Clay	-									5-9		
		\searrow		ML		Н						99	6		
 			Wet, Medium Dense, Gray Silt										13-12		
		$\mathbf{\mathbf{\nabla}}$		ML		Н						95	4		
 25			Wet, Medium Dense, Light Brown Silt	-									0-0		
		\bigvee		CL-ML		Н						82	4		
 			Wet, Medium Stiff, Brown Silty Clay with Sand	-									3-3		
		\bigvee		CL-ML		₩.						73	<u> </u>		
			Wet, Soft, Brown Silty Clay with Sand	-									1-1		
REM	ARK	S:	* Sample was not taken at the 100' dep	oth											

ARKANSAS DEPARTMENT OF TRANSPORTATION MATERIALS DIVISION - GEOTECHNICAL SECTION								BORI	NG N	0. 4		st Cree	ək								
JOB N	<u> </u>	AL3	100633 Greene County			+	DATE:		. 0	Ju	ne 1.2	022		-							
JOB N	AMI	E:	Paragould - North (S)	TYPE OF DRILLING: Hollow Stem Auger - Rotary Wash																	
	Route 49, Section 2										Hollow Stem Auger - Rotary Wash										
STAT	ION:		196+58		EQUIF	MENT	:		CM	E 75											
LOCATION: 23' Right of Existing Centerline																					
LOGG	EDI	BY: S	Stanley Bates					HAMN	AER C	ORREC	CTION	FACTOF	e: N	[/A	-						
СОМ	PLE	110	N DEPTH: 120.4																		
D E P T H	S Y M B O L	SAMPLES		SOIL GROUP	N PL	noisti	URE	E CON	ITENT	(%)	• •	PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D						
F1.			SURFACE ELEVATION: 280.7		1	0 20	30) 40	50	60	70		1								
┣	\mathbb{N}			CL		┝	┥					99	2-2								
<u> </u>	\mathbb{N}		Wat Soft Dark Crowlean Clay		1																
<u> </u>	\mathbb{N}		Wet, Soft, Dark Gray Learn Cray	-																	
	\mathbb{N}																				
40		\mathbb{N}		N/I								98	1								
		$ \triangle$					'						1-2								
				-																	
45																					
						+	-					100	0								
		$ \mapsto$											1-1								
\square				-																	
50												00	0								
L _		X		ML			\vdash					99	1-2								
┣																					
┣ —																					
<u> </u>																					
55			Wet, Very Loose, Dark Gray Silt				_					96	0								
<u> </u>		X		ML			Н						1-1								
<u> </u>																					
⊢ −				-																	
60																					
				N/1				1				94	0								
		\square						1					0-1								
				-																	
65																					
				ML			н[94	0								
L _		\vdash											0-1								
L _																					
\vdash –				-																	
70																					
REM	AR	S:	[^] Sample was not taken at the 100' de	pth																	

ARK	DEPARTMENT OF TRANSPORTATION				BOF	RING	NO.	4 Lo		st Cree	ek					
		ALS	100633 Greene County				PAC	jE E.	3	OF	4 111	ne 1 2	022		-	
JOB N	O. Ame		Paragould - North (S)					TYP	e. E of	DRIL	LING	Ju	iic 1, 2	022		
JODIN	111112		Route 49, Section 2					Н	ollo	w Ste	em A	uger	- Rota	ry Wash	L	
STAT	ION:		196+58					EQU	IPME	ENT:		0	CM	E 75		
LOCA	TION	:	23' Right of Existing Centerline													
LOGGED BY: Stanley Bates										R COR	RECT	'ION I	FACTOR	:: N	/A	_
COM	PLE	FIOI	N DEPTH: 120.4													
D E P T H	S Y M B O L	S A M P L E G	DESCRIPTION OF MATERIAL	SOIL GROUP	N PL	nois I	TUR	E CO	NTE	ENT (9	%) •	• LL	PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D
		Ŭ	Sold AGE ELEVATION. 200.7			02	20 3	0 4	0 :	<u>50 6</u>		0	80	3		
 75		X	Wet, Stiff, Gray Silty Clay with Sand	CL-ML -		F							00	5-7		
 		\times	Wet, Dense, Brown Poorly Graded Sand with Silt and Trace Gravel	SP-SM									11	<u>14</u> 20-21		
		X	Wet Lesse Drows Dearly Oradad	SP									4	3 4-3		
 85			Sand with Trace Gravel	-												
	6.0%88 0.0%88	\mathbf{X}		GP									1	2		
 0			Wet, Medium Dense, Brown Poorly Graded Gravel with Sand	-										3-7		
		\mathbf{X}		GP									2	4		
 			Wet, Very Loose, Brown Poorly Graded Gravel with Sand	-										2 1		
		\boxtimes		GP									0	2 4-2		
 			Wet, Loose, Brown Poorly Graded Gravel with Sand*	-												
105																
REM	ARK	S:	* Sample was not taken at the 100' dep	oth												

ARK				BOR	LING	NO.	4 Lo	ocus	st Cree	ək						
IOR N		413	100633 Greene County		PAG	iE c.	4	OF	4	ne 1 2	022		-			
JOB N	O. Amf	:	Paragould - North (S)					ТҮР	E. E OF	DRILI	LING	Jul	ic 1, 2	022		
1021	1 11012		Route 49, Section 2					Н	ollov	v Ste	em A	uger	- Rota	ury Wash		
STATI	ON:		196+58					EQU	IPME	NT:		0	CM	E 75		
LOCA	TION	1:	23' Right of Existing Centerline													
LOGGED BY: Stanley Bates										COR	RECT	ION F	FACTOR	a: N	/A	_
COM	PLE	TIOI	N DEPTH: 120.4	1												
D E P T H	S Y M B O L	S A M P L E 0	DESCRIPTION OF MATERIAL	SOIL GROUP	PL	AOIS	STUR	E CO	NTE	NT (9	%) •	LL	ERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	% T C R	% R Q D
	2111 2111	১	SURFACE ELEVATION: 280.7		1	0 2	20 3	0 4	05	06	0 7	0	Ь			
 			with Sand and Poorly Cemented Seams (Wilcox Group)	ML -									81	60 (5")		
110																
		\sim		NT										60 (2")		
 115			Wet Very Dense Light Gray Silty	-												
		X	Fine Sand	SM									18	60 (4")		
				-												
120		\times		SM									10	60		
			Boring Terminated	<u></u>									<u>\</u> -J_	(5")		
4.05																
125																
130																
L _																
135																
140																
REM	ARK	(S:	* Sample was not taken at the 100' de	pth												

_EGEND

1. Ground water elevations indicated on boring logs represent ground water elevations at date or time shown on boring log. Absence of water surface implies that no ground water data is available but does not necessarily mean that ground water will not be encountered at locations or within the vertical reaches of these borings.

Penetration in 60 Blows¤ Hard

- 2. Borings represent subsurface conditions at their respective locations for their respective depths. Variations in conditions between or adjacent to boring locations may be encountered.
- 3. Terms used for describing soils according to their texture or grain size distribution are in accordance with the Unified Soil Classification System.

Standard Penetration Test – Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6.0 inches to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and performing the test are recorded for each 6 inches of penetration on the drill log. The field "N" Value (N_f) can be obtained by $\frac{6}{2}$

adding the bottom two numbers for example: $\frac{6}{8-9} \Rightarrow 8+9 = 17blows / ft$. The "N" Value corrected to 60%

efficiency (N_{60}) can be obtained by multiplying N_f by the hammer correction factor published on the boring log.

Attachment B

Attachment C1

Site 1-Jacks Creek looking west (upstream) at the east side of the bridge (June 2022) Silty Clay exposed in channel

Site 1-Jacks Creek north end bridge abutment (June 2022)

Attachment C2

Site 2-Locust Creek east side of the bridge (June 2022)

Site 2-Locust Creek slide at the south abutment in silty clay

Site 2-Locust Creek another view of failed soil under south abutment

Site 2-Locust Creek slope at the north abutment

Attachment D1

Attachment D2

Attachment E1

Title:		100633- Jacks Creek	
Latitude:	36.100097		1
Longitude:	-90.459332	Get USGS Data	
Site Class	E		
PGA:	0.532		
F _{PGA} :	0.9		
A _S :	0.479		DESI
S _S :	0.97	1	
F _A :	0.936		
S _{DS} :	0.908	0.9	
S ₁ :	0.242		
F _v :	3.033	0.8	
S _{D1} :	0.733	0.7	
S _{Dc} :	D	S) Z	
T _s :	0.807	OITA 0.6	
T ₀ :	0.161		
		ACC	
		U.4 0.4	

Attachment E2

Title:		100633- Lo	cust Creek				
Latitude:	36.107887						
Longitude:	-90.447172	Get	t USGS Data				
Site Class	E						
		1					
PGA:	0.534						
F _{PGA} :	0.9				100)633- L	OCUS ⁻
A _s :	0.48			D	ESIG	N RESP	ONSE
S _S :	0.973	1					
F _A :	0.933						
S _{DS} :	0.907	0.9					
S ₁ :	0.242						
F _v :	3.031	0.8					
S _{D1} :	0.734	0.7					
S _{Dc} :	D	N (G)			\mathbf{i}		
T _s :	0.809	0.6 OIL					
T ₀ :	0.162						
		ACC					
		T84. 0.4					
		PECT					
		⁵⁵ 0.3					
		0.2					

Attachment F1

Attachment F2

Attachment G1

340			Material Name	Color	Unit Weight (lbs/ft3)	Cohesion (pst)	Phi (deg)
		<u> </u>	Fill	╀╋╋╋	120	1500	0
			Silty Clay	┼┝┻	115	700	0
		L	Medium Dense Silt		125	0	37
			loose, Silt		110	0	33
		L	Lean Clay		115	1050	0
			Sand with Silt		125	0	36
		Silt	with some Sand and Organic		120	0	34
-	1.72		Very Soft Lean clay		105	400	0
		Silt	With Trace Organic matter		105	0	29
					·		
						•	
	00	w /				9	
						~	
						•	
54						°	
	· · · · · · · · · · · · · · · · · · ·	·····	····				
14940 14960 14	4980 15000	15020 15040	15060 150)80	15100	15120	15140
	Project		100633 Paragould- Nort	th (S)			
	Site	Jacks Creek (Site 1)	Analysis Type		Short Term		
	Analyzed By	MBB					
SLIDEINTERPRET 9.019 Date 11/29/2022			Configuration	East Bridge End, 1V: 2H End slope			

Attachment G2

-	Material Name	e Color	Unit Weight (lbs/ft3)	Cohesion (psf)	Phi (deg)					
32	Fill		120	1500	0					
-	Silty Clay		120	1050	0					
-	Loose, Silt		110	0	34					
	Sandy Silt		115	0	36			1.89		
300	Silty Sand with Laye Silty Clay	ers of	110	0	34			$\overline{\}$		
-	Very Loose, Silt		105	0	26			\backslash		
1										
	19380 19400	19420	19440	19460)	19480	19500	19520	19540	19560
_		Project				100633 Paragoul	d- North (S)			
1	rocscience	Site	Locust Cree	k (Site 2)		Analysis Type		Short Term		
		Analyzed By	MBI	В		Configuration	West Brid	ae End 11/ · 24 Er	nd Slone	
SLIDEINTERPRET	DeINTERPRET 9.019 Date 11/16/2022			2022						

-											
		Material Name	Color	Unit Weight (lbs/ ft3)	Cohesion (psf)	Phi (deg)					
-		Fill		120	50	30					
20		Silty Clay		120	50	25					
-		Loose, Silt		110	50	34				_	
-		Sandy Silt		115	0	36			1.49		
		Silty Sand with Layers of Silty Clay		110	0	34					
300		Very Loose, Silt		105	0	26			\	\backslash	
			250.00 l	os/ft2						\backslash	
										\backslash	
-							l			\backslash	
- 28										\backslash	
-					w					\backslash	
-					_						
- 09									0		
~											
-											
40											
50											
	0										
	19380	19400	19420	19440	19460	19	480	19500	19520	19540	19560
_		Pr	oject			1	00633 Parag	jould- North (S	5)		
	Iroc	scionco	e	Locust Creek	k (Site 2)		Analysis Type		Long	Ferm	
			alyzed By	MBE	3		Configuration	Most	Bridge End 1	V · 2H End Slope	
SLIDEINTER	PRET 9.019	Da	ite	11/16/2	2022			west	Driuge Ellu, 1		

340		Material Name	Color	Unit Weight (lbs/ ft3)	Cohesion (psf)	Phi (deg)
	2.49	Fill		120	1500	0
		Very Stiff, Silty Clay		130	2500	0
320		Medium Dense, Silt		115	0	35
		Silty Clay with Sand		110	600	0
0		Clay		110	600	0
) () ()		Very Loose, Silt		105	0	26
280					•	
26						
					•	
240					ĺ	
220						
					0	
	19540 19560 19580 19600 19620 19640 19660	<u> </u>	0	19720 197	······································	760
_	Project 1	100633 Paragould- North (S)			
	Locust Creek (Site 2)	Analysis Type		Short Term		
Ľ	Analyzed By MBB		Bridae	Find 1V. 2H Find s	lone	
SLIDEI	NTERPRET 9.019 Date 11/29/2022		. Dhuye	, End, IV. ZITENU S	ope	

-						- • •	
 8		Material Name	Color	Unit Weight (lbs/ft3)	Cohesion (psf)	Phi (deg)	◀ 0.24
4		Fill		120	1500	0	W
		Very Stiff, Silty Clay		130	2500	0	•
		Medium Dense, Silt		115	0	35	
320		Silty Clay with Sand		110	600	0	
		Clay		110	600	0	
		Very Loose, Silt		105	0	26	
19550 19600	19650 19700	19750		19800		198	50
	Project 10	0633 Paragoul	d- North	(S)			
l rocscience	Site Locust Creek (Site 2)	Analysis Type		Seisr	nic		
SLIDEINTERPRET 9.019	Апануzed ву МВВ Date 11/29/2022	Configuration	Ea	st Bridge End, 1	V: 2H End Sl	оре	

Attachment H

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 100633

TIMBER PILING FOR SOIL DENSIFICATION AND REINFORCEMENT

Description. This Special Provision (SP) covers Timber Piles driven through or under roadway embankments or bridge approach embankments, around intermediate bents, or at locations shown on the plans for the purpose of soil densification and/or reinforcement. This item shall consist of furnishing and driving treated piling according to this SP and conforming to the lines, grades, and spacing shown on the plans.

Materials. Materials for timber piling shall conform to the following requirements.

- 1. Piling shall be treated timber piles of Southern Yellow Pine or Douglas Fir.
- 2. Piles shall be of sound wood, free from decay or insect damage. Treated piling shall have a minimum amount of red heart. Sound knots shall be no larger than 4" or 1/3 of the diameter of the pile at the point where they occur, whichever is the smaller. The size of a knot shall be its diameter measured at right angles to the length of the pile. Piles may have unsound knots not exceeding 1/2 the permitted size of a sound knot, provided that the unsoundness extends to not more than 1 ½" depth, and that the adjacent areas of the trunk are not affected. Cluster knots consisting of two or more knots grouped together, the fibers of the wood being deflected around the entire unit, are prohibited. The sum of sizes of all knots in any foot of length of the pile shall not exceed six times the size of the largest permitted single knot.
 - a. Holes of 1/2" or less in average diameter will be permitted, provided the sum of the average diameters of all holes in any square foot of pile surface does not exceed $1\frac{1}{2}"$.
 - b. Twist of spiral grain in any 20' of length shall not exceed 1/2 of the circumference at the midpoint of the length measured.
 - c. Splits shall be no longer than the butt diameter. The length of any shake in the outer half of the radius of the butt of the pile, when measured along the curve of the annual ring, shall not exceed 1/3 of the circumference of the butt of the pile. The butts and tips shall be sawed square. The tips may be tapered to a point not less than 4" in diameter.
 - d. All piles shall be peeled by removing all rough bark and at least 80% of the inner bark. No strip of the inner bark remaining on the pile shall be over 3/4" wide and there shall be at least 1" of clean wood surface between any two such strips. At least 80% of the surface of any circumference shall be clean wood.
 - e. Timber to be used for piling shall be cut above the ground swell and shall taper from butt to tip. A line from the center of the tip to the center of the butt shall not fall outside of the center of the pile at any point more than 1% of the length of the pile. In short bends, the distance from the center of the pile to a line stretched from the center of the pile above the bend to the center of the pile below the bend

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 100633

TIMBER PILING FOR SOIL DENSIFICATION AND REINFORCEMENT

shall not exceed 4% of the length of the bend or a maximum of $2\frac{1}{2}$ ". Knots shall be trimmed flush with the body of the pile.

3. Piles shall have a minimum diameter at the tip, measured under the bark, as follows:

Length of Pile	<u>Tip Diameter</u>
Less than 40'	8"
40' to 60'	6"

4. The minimum diameter of piles at sections 3' from the butt, measured under the bark, shall be as follows:

<u>Length of Pile</u>	Diameter of Pile
20' to 30'	12"
30' to 40'	12"
Over 40'	13"

The diameter of the pile at the butt shall not exceed 20". The diameter of a pile in cases where the tree is not exactly round shall be determined either by measuring the circumference and dividing the number of inches by 3.14 or by taking the average of the maximum and minimum diameters at the location specified.

Storage and Protection of Materials. Timber piles shall be stacked on supports at least 12" above the ground surface to avoid absorption of ground moisture. Piles shall be closely-stacked to prevent warping or sagging. The ground underneath and in the vicinity of material stacks shall be kept reasonably clear of vegetation.

Preservation Treatment of Timber Piles. Preservation treatment of timber piles shall be accomplished according to the requirements of Subsection 817.04 of the Standard Specifications.

Driving. Prior to beginning pile-driving operations the Contractor, shall field verify the location of all underground utilities and obtain approval from the Engineer to begin. The Contractor shall be responsible for all damages and/or claims arising out of the installation of Timber Piling for Soil Densification and/or Reinforcement. Driving equipment that damages the piling shall not be used. Hammers shall be capable of driving to the plan tip elevations or to refusal without damage to the pile. Driving shall be considered complete once the pile has reached the tip elevation shown on the plans or refusal in rock or intermediate geotechnical materials (IGM) is encountered, whichever is shallower.

- 1. **Hammers:** All piling shall be driven with an air, steam, or diesel hammer. Gravity hammers will be permitted only when shown on the plans or as elsewhere allowed by the specifications. Hammers shall develop a total energy of not less than 12,500 ft.-lbs.
 - a. The plant and equipment furnished for air or steam hammers shall have sufficient capacity to maintain, under working conditions, the pressure at the hammer specified by the manufacturer. Accurate pressure gauges shall be placed at the
ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 100633

TIMBER PILING FOR SOIL DENSIFICATION AND REINFORCEMENT

boiler or tank and at the hammer so that the drop in pressure between the gauges can be determined.

- b. When a single acting diesel hammer is used, it shall be equipped with a stroke indicator or the Contractor must furnish a method approved by the Engineer for determining the actual stroke. When a double acting diesel hammer is used, it shall be equipped with a bounce chamber pressure gauge in good working order mounted near ground level so as to be conveniently read by the Engineer when monitoring energy output of the hammer. The Contractor shall provide charts that equate the chamber pressure to equivalent energy.
- 2. Hammer Cushions: All impact pile driving equipment except gravity hammers shall be equipped with a hammer cushion of suitable thickness to prevent damage to the hammer or pile and to ensure uniform driving behavior. Hammer cushions shall be made of durable, manufactured materials, complying with the hammer manufacturer's guidelines except that all wood, wire rope, and asbestos hammer cushions are specifically prohibited. A striker plate as recommended by the hammer manufacturer shall be placed on the hammer cushion to ensure uniform compression of the cushion material. The hammer cushion shall be inspected in the presence of the Engineer before beginning pile driving at each structure or after each 100 hours of pile driving, whichever is more frequent. When the thickness of a hammer cushion is reduced by more than 25% of its original thickness, the Contractor shall replace it before driving is permitted to continue.
- 3. **Pile Drive Head:** A pile driven with an impact hammer requires an adequate drive head to distribute the hammer blow to the pile head. The drive head shall be axially aligned with the hammer and the pile. The drive head shall be guided by the leads and shall not be free swinging. The drive head shall fit around the pile head in a manner that will prevent transfer of torsional forces during driving while maintaining proper alignment of hammer and pile. The pile heads shall be cut squarely and a drive head, as recommended by the hammer manufacturer, shall be provided to hold the axis of the pile in line with the axis of the hammer.
- 4. **Driving Equipment Information:** The Contractor shall submit to the Engineer, for information and record purposes, pile driving equipment information at least 30 days before driving piles. The information shall be submitted on a Pile and Driving Equipment Data Form, which will be supplied by the Engineer. Any change in the driving system will require the Contractor to submit a new Pile and Driving Equipment Data Form.
- 5. Additional Equipment: In case the required penetration is not obtained with a hammer complying with the above minimum requirements, the Contractor shall provide a different hammer and/or sufficient additional equipment at no cost to the Department. Additional equipment not otherwise provided for herein shall be approved by the

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 100633

TIMBER PILING FOR SOIL DENSIFICATION AND REINFORCEMENT

Engineer prior to its use. Pile tips shall be used where it may be required to reach the minimum tip elevation and shall be at no additional cost to the Department.

- 6. Leads: Pile driver leads shall be constructed in such a manner as to provide freedom for vertical movement of the hammer and shall be held in position in such a manner as to ensure adequate support to the pile during driving. The axis of the leads and hammer shall coincide with the axis of the pile as nearly as practicable.
- 7. Accuracy of Driving: Pile shall be driven with a variation of not more than ¹/₄" per foot from the vertical. Piles spacing shall not differ from those shown on the plans by 1 foot. Piling shall be driven under the observation of the Engineer or his representative so that data may be obtained for determining the penetration.

Order List for Piles. The Contractor shall furnish piles according to an itemized list, which will be furnished by the Engineer, showing the number and length of piles. In determining lengths of piles for ordering and for quantities to be included in the Contract, the lengths given in the order list shall be based on the lengths that are assumed to be driven to minimum penetration and cut off at the elevation shown on the plans. The Contractor may, at no cost to the Department, increase the lengths given to provide for fresh heading and for such additional length as may be necessary to suit the Contractor's method of operation.

Defective Piles. The Contractor shall not subject piles to excessive abuse that will produce cracking, crushing, splitting, or deformation of the pile. Manipulation of piles to force them into proper position, considered by the Engineer to be excessive, will not be permitted. Any pile damaged because of internal defects or improper driving, or any pile driven out of its proper location or driven below the elevation fixed by the plans or the Engineer, shall be corrected at no cost to the Department by one of the following methods, as approved by the Engineer:

- 1. The pile may be withdrawn and replaced by a new, and if necessary, longer pile.
- 2. A second pile may be driven adjacent to the defective or low pile.
- 3. The pile may be spliced or built up as otherwise provided herein.

Piles pushed up by the driving of adjacent piles or by any other cause shall be re-driven to grade. Any crushed or damaged portion of piling may be cut off and built up or the pile completely replaced, as approved by the Engineer. Cutoff, buildup, and/or replacement of damaged piles shall be at no cost to the Department.

Cutting Off Timber Piles. Cut-offs shall be a minimum of 2 feet below roadway surface and embankment side slope faces. In addition, cut-off length shall be sufficient to permit the complete removal of any material damaged by driving.

Method of Measurement. Timber Piling will be measured by the actual number of linear feet of accepted pile remaining in the finished work after all cut-offs or build-ups have been made, based upon lengths shown on the plans or established by the Engineer.

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 100633

TIMBER PILING FOR SOIL DENSIFICATION AND REINFORCEMENT

In case piles are driven to refusal in resistant rock or IGM that is present shallower than the plan tip elevations shown on plans, timber piles will be measured and paid by the plan lengths shown on plans, including any cut-off length.

No allowance for cut-off will be made on piling for any length in excess of the lengths shown on the plans or established by the Engineer. For piles furnished according to the lengths shown on the plans or established by the Engineer that are found to be too short and are spliced according to details shown in the plans, an allowance of 4 linear feet of piling will be made for each timber pile splice in addition to the actual length of accepted pile in place.

No allowance will be made for cut-off or build-up of any portion of a pile that has been damaged, for splices made for the convenience of the Contractor, for extra length ordered for the Contractor's convenience, or for cutback necessary for splicing. Cut-off material shall become the property and responsibility of the Contractor.

Basis of Payment. Work completed and accepted and measured as provided above will be paid for at the contract unit price bid per linear foot for Timber Piling, which price shall be full compensation for furnishing, transporting, handling and storing material, driving, drilling, and excavation, for cut-off, splicing, and build-up in accordance with the requirements of these Specifications, and for all labor, equipment, tools, and incidentals necessary to complete the work.

Payment will be made under:

Pay Item

Timber Piling

Pay Unit Linear Foot Attachment I1

Attachment I2

Attachment J1

Attachment J2

	1.12	Matarial		Linit Maight	Cohosian	Dh:	
400		Name	Color	(lbs/ft3)	(psf)	(deg)	◀ 0.24
		Fill		120	1500	0	W ww
		Very Stiff, Silty Clay		130	2500	0	1
		Medium Dense, Silt		115	0	38	
220		Silty Clay with Sand		110	600	0	
		Clay		110	600	0	
		Very Loose, Silt		105	0	28	
19550 19600	19650 19700	1975	0	19800		198	50
	Project 1	00633 Paragou	Ild- Nortl	n (S)			
I rocscience	Site Locust Creek (Site 2)	Analysis Type		Seism	nic		
SLIDEINTERPRET 9.019	Configuration	Ea	ast Bridge End, 1	/: 2H End Slo	pe		

Attachment K1

Attachment K2

Attachment L1

Recommended Geotechnical Parameters for Lpile Analysis- Bents 1 & 2 for Site 1

Bent 1								
Elevation, ft	p-y Curve Model	Effective Unit Weight, γ', pcf	Undrained Shear Strength, Cu, psf	Strain Factor, ε ₅₀	Friction Angle, φ, °	Soil Modulus, k, pci		
Above Ground (Fill)	Soft Clay (Matlock)	120	750	0.01	NA	NA		
Ground Level to 276	Stiff Clay w/o Free Water	115	1050	0.007	NA	NA		
276 to 267	Sand (Reese)	62	NA	NA	32	40		
267 to 256	Sand (Reese)	63	NA	NA	32	40		
256 to 216	Sand (Reese)	59	NA	NA	29	20		
Below 216	Sand (Reese)	80	NA	NA	36	90		

Bent 2								
Elevation, ft	p-y Curve Model	Effective Unit Weight, γ', pcf	Undrained Shear Strength, Cu, psf	Strain Factor, ε ₅₀	Friction Angle, φ, °	Soil Modulus, k, pci		
Above Ground (Fill)	Soft Clay (Matlock)	120	750	0.01	NA	NA		
Ground Level to 276	Soft Clay (Matlock)	110	700	0.01	NA	NA		
276 to 271	Sand (Reese)	125	NA	NA	36	145		
271 to 266	Sand (Reese)	60	NA	NA	31	25		
266 to 261	Stiff Clay with Free Water	53	1050	0.007	NA	NA		
261 to 251	Sand (Reese)	69	NA	NA	35	75		
251 to 246	Soft Clay (Matlock)	45	250	0.02	NA	NA		
246 to 216	Sand (Reese)	58	NA	NA	27	20		
Below 216	Sand (Reese)	75	NA	NA	36	90		

Attachment L2

Bent 1								
Elevation, ft	p-y Curve Model	Effective Unit Weight, γ', pcf	Undrained Shear Strength, Cu, psf	Strain Factor, ϵ_{50}	Friction Angle, φ, °	Soil Modulus, k, pci		
Above Ground (Fill)	Soft Clay (Matlock)	120	750	0.01	NA	NA		
Ground Level to 271	Stiff Clay w/o Water Table	115	1050	0.007	NA	NA		
271 to 266	Sand (Reese)	110	NA	NA	32	55		
266 to 261	Sand (Reese)	62	NA	NA	32	40		
261 to 256	Sand (Reese)	67	NA	NA	35	75		
256 to 251	Sand (Reese)	62	NA	NA	32	40		
251 to 231	Sand (Reese)	57	NA	NA	23	20		
231 to 206	Sand (Reese)	59	NA	NA	26	20		
Below 206	Sand (Reese)	80	NA	NA	36	90		

Recommended Geotechnical Parameters for Lpile Analysis- Bents 1-4 for Site 2

Bent 2								
			Undrained					
Elovation ft	p-y Curve	Effective Unit	Shear	Strain Factor,	Friction Angle,	Soil Modulus,		
Elevation, it	Model	Weight, γ', pcf	Strength, Cu,	ε ₅₀	ф, °	k, pci		
			psf					
Ground Level	Sand (Roosa)	67	NIA	NA	25	75		
to 256	Saliu (Reese)	07	NA	NA	55	75		
256 to 251	Sand (Reese)	62	NA	NA	32	40		
251 to 231	Sand (Reese)	57	NA	NA	23	20		
231 to 206	Sand (Reese)	59	NA	NA	26	20		
Below 206	Sand (Reese)	80	NA	NA	36	90		

Bent 3								
			Undrained					
Elovation ft	p-y Curve	Effective Unit	Shear	Strain Factor,	Friction Angle,	Soil Modulus,		
Elevation, It	Model	Weight, γ', pcf	Strength, Cu,	ε ₅₀	φ, °	k, pci		
			psf					
Ground to 256	Sand (Reese)	68	NA	NA	33	75		
256 to 241	Soft Clay	50	700	0.02	NA	NΔ		
230 (0 241	(Matlock)	50	700	0.02				
Below 241	Sand (Reese)	57	NA	NA	26	20		

Bent 4								
			Undrained					
Elovation ft	p-y Curve	Effective Unit	Shear	Strain Factor,	Friction Angle,	Soil Modulus,		
Elevation, It	Model	Weight, γ', pcf	Strength, Cu,	ε ₅₀	φ, °	k, pci		
			psf					
Above Ground	Soft Clay	120	750	0.01	NA	NIA		
(Fill)	(Matlock)	120	730	0.01	NA	NA		
281 to 266	Stiff Clay w/o Free Water	128	2000	0.007	NA	NA		
266 to 256	Sand (Reese)	68	NA	NA	33	75		
256 to 241	Soft Clay (Matlock)	50	700	0.02	NA	NA		
Below 241	Sand (Reese)	57	NA	NA	26	20		