ARKANSAS DEPARTMENT OF TRANSPORTATION

SUBSURFACE INVESTIGATION

STATE JOB NO.		070415		
FEDERAL AID PRO	JECT NO	NHPP-0013(18)		
	BAYOU DER	RISEAUX STRS. & APF	PRS. (S)	
STATE HIGHWAY	212	SECTION	1	
IN		CLEVELAND		COUNTY

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

Job No. 070415 Bayou Derriseaux Structures and Approaches Staves, Cleveland County, Arkansas

> September 28, 2018 Terracon Project No. 35185047.R1

Prepared for:

Michael Baker International, Inc. Little Rock, Arkansas

Prepared by:

Terracon Consultants, Inc. Little Rock, Arkansas

September 28, 2018

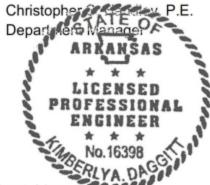
Michael Baker International, Inc. 1400 West Markham, Suite 204 Little Rock, Arkansas 72201

- Attn: Mr. Scott Thornsberry
 - P: (501) 244-1004
 - E: <u>scott.thornsberry@mbakerintl.com</u>
- Re: Revised Geotechnical Engineering Report Job No. 070415 Bayou Derriseaux Structures and Approaches Arkansas Highway 212 Staves, Cleveland County, Arkansas Terracon Project No. 35185047.R1

Dear Mr. Thornsberry:

We are pleased to submit this revised Geotechnical Engineering Report for the above-referenced project. This study was performed in general accordance Task Order No. 025 dated April 10, 2018. In an email dated September 13, 2018, Fred Harper with Michael Baker International, Inc. (Michael Baker) requested additional pile diameters. In addition to supplementary pile diameters, a new resistance factor was applied to the factored resistances consistent with a higher level of control that will be applied at the time of pile installation. All other recommendations provided in Terracon Geotechnical Engineering Report No. 35185047 remain applicable to the project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.


Sincerely,

Terracon Consultants, Inc. Certificate of Authorization #223, Expires 12/31/2019

Kimberly A. Daggitt, P.E. Project Engineer Arkansas/No. 16398

Greg J. Klein, P.E. National Director

Chris & Hundle

Terracon Consultants, Inc. 25809 I30 South Bryant, Arkansas P (501) 847 9292 F (501) 847 9210 terracon.com

REPORT TOPICS

INTRODUCTION	1
SITE CONDITIONS	1
PROJECT DESCRIPTION	2
GEOTECHNICAL CHARACTERIZATION	3
GEOTECHNICAL OVERVIEW	6
EARTHWORK	7
PRELIMINARY SHALLOW FOUNDATIONS	
LATERAL EARTH PRESSURE	
DEEP FOUNDATIONS	
SEISMIC CONSIDERATIONS	
GENERAL COMMENTS	

Note: This report was originally delivered in a web-based format. **Orange Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the **leracon** *conteport* logo will bring you back to this page. For more interactive features, please view your project online at <u>client.terracon.com</u>.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES SITE LOCATION AND EXPLORATION PLAN EXPLORATION RESULTS (Boring Logs and Laboratory Data) SUPPORTING INFORMATION (General Notes)

Revised Geotechnical Engineering Report Job No. 070415 Arkansas Highway 212 Staves, Cleveland County, Arkansas Terracon Project No. 35185047.R1 September 28, 2018

INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering services performed for the proposed bridge replacements located on Arkansas Highway 212 in Staves, Cleveland County, Arkansas. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- subsurface soil conditions
- groundwater conditions
- site preparation and earthwork
- lateral earth pressures

- foundation design and construction
- floor slab design and construction
- seismic site classification per AASHTO

The geotechnical engineering scope of work for this project included the advancement of thirteen test borings to depths ranging from approximately 10 to 100 feet below existing site grades.

Maps showing the site and boring locations are shown in the **Site Location** and **Exploration Plan** sections, respectively. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs in the **Exploration Results** section of this report.

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.

Job No. 070415 Staves, Cleveland County, Arkansas September 28, 2018 Terracon Project No. 35185047.R1

Item	Description		
Parcel information Two bridges have been proposed for replacement: 1. Bridge No. M3994 Latitude: 34.0456°, Longitude: -92.2338° 2. Bridge No. M3995 Latitude: 34.0462°, Longitude: -92.2311° See Site Location Plan attached to the end of this report			
Existing improvements	Existing bridge structures		
Current ground cover	Asphalt pavement along the existing road and bridge alignment. Embankment and natural ground cover along the proposed alignment areas		
Occlose 12	<u>Alluvium (Channel Meander), Qcm</u> - This unit represents more recent channel meanders and current flood plain deposits of significant streams. Channel meander scars are distinct in this unit. The partition of this unit from other Holocene alluvial deposits was based more on geomorphic consideration than lithic or age consideration. The lower contact is unconformable. The thickness is variable		
Geology ^{1, 2}	<u>Jackson Group</u> – the Jackson Group is divided into two distinct units in Arkansas: the White Bluff Formation and the Redfield Formation. The White Bluff Formation contains: sand rich in molluscan fossils, glauconitic clay with common invertebrate fossils, and a blocky clay with some silt and a trace of sand. The Redfield Formation is typically a sequence of light-gray, thinly laminated silts, silty clays, and silty sands.		
-	ic Map of Arkansas and Geological Google Earth files published by the al Survey, 2015, www.geology.ar.gov		
 2 "Stratigraphic Summary of Arkansas" published by the Arkansas Geological Commission 1998 			

2. "Stratigraphic Summary of Arkansas", published by the Arkansas Geological Commission, 1998, revised 2004

PROJECT DESCRIPTION

Our initial understanding of the project was provided in our proposal and was discussed in the project planning stage. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows:

Item	Description		
Project description	The Arkansas Department of Transportation (ArDOT) is proposing structures and approach improvements on Highway 212, Section 1 in Cleveland County. The purpose of the project is to replace two structures: Bridge Number M3994, Log Mile 2.63 and Bridge Number M3995, Log Mile 2.78.		

Job No. 070415 Staves, Cleveland County, Arkansas September 28, 2018 Terracon Project No. 35185047.R1

Item	Description	
Bridge Construction	The bridge replacement construction plans were not available at the time of this report. Through coordination with Michael Baker, we understand that the bridge will likely be supported on pipe pile foundations	
Finished elevation	We assume the final bridge grade will match the existing bridge grade	
Maximum loads	Not known at the time of this report	
Grading/Slopes	We assume that final grade will be at or near existing grade, unless major roadway improvements are included with the bridge improvements.	
Below-grade structures	None anticipated	
Free-standing retaining walls	None anticipated	
Estimated start of construction	2019	

GEOTECHNICAL CHARACTERIZATION

Subsurface Profile

Based on the results of the borings, subsurface conditions at the boring locations can be generalized as follows:

Stratum	Approximate Depth to Bottom of Stratum (feet)	Material Description	Consistency/Density
1	5	Fill: Lean clay	N/A
2	18.5	Lean clay, lean clay with sand, fat clay with sand	Medium stiff
3	28.5	Sandy lean clay and silty sand	Medium stiff clay and loose to medium dense sand
4	38.5	Poorly graded sand and poorly graded sand with gravel	Medium dense to very dense
5	100	Fat clay, sandy fat clay, fat clay with sand, sandy lean clay, and lean clay with sand	Very stiff to hard

Roadway and shoulder borings were also performed for Bridge Structure No. M3994. The borings generally consisted of fill soils consisting of fat clay and lean clay soils with varying amounts of sand to depths of about 2 to 5 feet below the existing ground surface. Native lean clay and lean

clay with sand soils were observed underlying the fill soils in the roadway and shoulder borings to a termination depth of about 10 feet.

Stratum	Approximate Depth to Bottom of Stratum (feet)	Material Description	Consistency/Density
1	5 Fill: Poorly graded sand, lean clay with sand and sandy lean clay		N/A
2	18.5	Sandy lean clay, lean clay, clayey sand, and poorly graded sand with clay	Very soft to medium stiff clay and very loose to dense sand
3	33.5	Silty sand, clayey sand, fat clay and sandy lean clay	Loose sand and medium stiff to hard clay
4	100	Sandy lean clay, fat clay and fat clay with sand	Stiff to hard

Bridge No. M3995 (Borings B-3, B-4, and B-5)

Roadway and shoulder borings were also performed for Bridge Structure No. M3995. The borings generally consisted of fill soils containing sandy lean clay soils to depths of about 2 to 8.5 feet below the existing ground surface. Native sandy lean clay, lean clay with sand, clayey sand, and silty sand soils were observed underlying the existing fill soils to the termination depths of about 10 feet in the roadway and shoulder borings.

Conditions encountered at each boring location are indicated on the individual boring logs shown in the **Exploration Results** section and are attached to this report. Stratification boundaries on the boring logs represent the approximate location of changes in native soil types; in situ, the transition between materials may be gradual.

Groundwater Conditions

The boreholes were observed while drilling and after completion for the presence and level of groundwater. The water levels observed in the boreholes can be found on the boring logs in **Exploration Results**, and are summarized below.

Job No. 070415 Staves, Cleveland County, Arkansas September 28, 2018 Terracon Project No. 35185047.R1

Structure	Boring number	Approximate depth to groundwater while drilling (feet) ¹
	B-1	Not observed prior to wash boring set-up
	B-2	Not observed prior to wash boring set-up
M3994	R-1	Not observed
	R-2	8.5
	S-1	Not observed
	S-2	Not observed
	В-3	Not observed prior to wash boring set-up
	B-4	7
M3995	B-5	Not observed prior to wash boring set-up
	R-3	Not observed
	R-4	8.5
	S-3	Not observed
	S-4	8.5

Groundwater was not observed in some of the borings while drilling, or for the short duration that the borings could remain open. However, this does not necessarily mean these borings terminated above groundwater, or the water levels summarized above are stable groundwater levels. Due to the low permeability of the soils encountered in the borings, a relatively long period may be necessary for a groundwater level to develop and stabilize in a borehole in these materials. Long term observations in piezometers or observation wells sealed from the influence of surface water are often required to define groundwater levels in materials of this type.

Groundwater was not observed in Borings B-1, B-2, B-3 or B-5 prior to wash-boring set-up. This does not mean that groundwater is not present in these borings. An accurate water level cannot be determined in these borings because the wash boring procedure introduces water to the borehole.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

GEOTECHNICAL OVERVIEW

Two bridge replacements are planned along Highway 212 near Staves, Arkansas in Cleveland County. Based on experience in the project area, the native soils encountered at both bridge sites are associated with alluvial deposits. Variable layers of lean and fat clay soils with varying amounts of sand as well as clayey and silty sand soils were observed in the borings drilled for this project. Generalized profiles of the soils observed at each bridge structure location were developed. The results of our study indicated that the site can be developed for the proposed bridge replacements. During our study the following geotechnical conditions were identified:

- Existing fill
- Low-Strength Soils
- Expansive Soils
- Moisture-Sensitive Soils

The following discussion addresses these items and provides the basis for design recommendations present in the subsequent sections. Additional construction-related concepts are provided in the various **Construction Consideration** sections of this report.

Existing Fill

Existing fill consisting of lean and fat clay soils with varying amounts of sand and poorly graded sand was observed to depths ranging from the surface to 8.5 feet below the existing surface. Many of the borings were drilled in the roadway or along the existing embankment therefore we believe the fill is associated from the previous roadway and bridge construction. Information regarding the placement of the existing fill was not available at the time of this report. There is an inherent risk that otherwise unsuitable material within or buried by the fill will not be discovered that could result in unpredictable post-construction performance of the bridge foundations or roadway supported on existing fill.

Low-Strength Soils

Low-strength (soils with SPT N-values less than or equal to 5 blows per foot) existing fill and native soils were observed in all of the borings except Boring B-5 to depths extending up to about 18.5 feet below the existing ground surface. In their present condition, the low-strength soils are not suitable for providing direct support to shallow foundations and would be expected to settle significantly under new embankment loads. The low-strength soils listed above would also provide low skin friction and lateral resistance, which were factored into the deep foundation parameters and resistances provided in the Deep Foundations section.

Expansive Soils

Fat clay with sand soils were observed in Boring B-2 within the zone of seasonal moisture change. Fat clay soils are expansive and have a high potential for shrinking and swelling with variations in moisture content. We understand that the bridge foundations are to be supported on driven piles.

Moisture-Sensitive Soils

The lean clay, clayey sand and silty sand existing fill and native near-surface soils are moisturesensitive and prone to further strength loss with increased moisture content. These soils could become unstable with typical earthwork and construction traffic, especially after precipitation events; therefore, effective drainage should be completed early in the construction sequence and maintained after construction. If possible, the grading should be performed during the warmer and drier times of the year. If grading or construction is performed during the winter months, an increased risk for possible treatment of unstable subgrade will persist.

Based on the subsurface conditions observed as well as the conversations with the client, we understand that driven piles are being considered for support of the bridge replacements. The **Deep Foundations** section addresses the support of the two bridges on driven piles. The **General Comments** section provides an understanding of the report limitations.

EARTHWORK

Earthwork should be performed as required in the ArDOT Standard Specifications for Highway Construction, 2014 edition. The following recommendations for site preparation, excavation, subgrade preparation and placement of engineered fills on the project are considered general recommendations for earthwork on-site. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation, and other geotechnical conditions during construction of the project. Terracon should be retained during the site preparation operations.

Fill Material Types

Fill materials should be free of organic matter and debris. Portions of the on-site soils or approved imported borrow materials may be used as fill material. Near-surface existing fill and native soils in borings B-1, B-2, R-1, R-2, S-2 and S-4 exhibited plasticity indices greater than 20, which is typically considered unsuitable for use as engineered fill in the upper 2 feet of pavement subgrade. Existing fill soils observed in Borings S-1, B-3, R-3, R-4 and S-3 appeared to be suitable for use as engineered fill. We expect that materials from borings will be intermixed during construction; therefore, if it is desired to use on-site material as engineered fill for this project, we recommend thorough testing prior to reuse. Materials with plasticity indices greater than 20 should not be used within the upper 2 feet of the finished pavement subgrade.

While ArDOT has no specific requirement for borrow materials, they do require that the materials must be capable of forming and maintaining stable embankment when compacted. Therefore, we recommend specifically avoiding elastic silts (MH) and organic soils (OL, OH and PT) when considering materials for use as borrow,

We suggest that on-site soils or approved imported borrow soils should meet the following material property requirements:

Sieve Size	Percent Finer by Weight (ASTM C136)		
3 inch	100		
No. 4	50-100		
No. 200	15-50		

Plasticity Index...... 20 (max)

Fill Placement

Where fill is placed on existing slopes steeper than 5H:1V, benches should be cut into the existing slopes prior to fill placement. The benches should have a minimum vertical face height of 1 foot and a maximum vertical face height of 3 feet and should be cut wide enough to accommodate the compaction equipment. This benching will help provide a positive bond between the fill and natural soils and reduce the possibility of failure along the fill/natural soil interface. We recommend that fill slopes be filled beyond the planned final slope face and then cut back to develop an adequately compacted slope face.

Utility Trench Backfill

All trench excavations should be made with sufficient working space to permit construction including backfill placement and compaction. It is strongly recommended that a qualified person provide full-time observation and compaction testing of trench backfill within pavement areas.

Earthwork Construction Considerations

Shallow excavations, are anticipated to be accomplished with conventional construction equipment. Upon completion of filling and grading, care should be taken to maintain the subgrade water content prior to construction of foundations or pavements. Construction traffic over the completed subgrades should be avoided. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. Any water that collects over, or adjacent to, construction areas should be promptly removed. If the subgrade freezes, desiccates, saturates, or is disturbed, the affected material should be removed, or these materials should be scarified, moisture conditioned. All these processes should be observed by Terracon.

If unstable subgrade conditions are encountered, the methods described below can be considered to improve subgrade strength. Common methods include scarification, moisture conditioning and compaction, removal of unstable materials and replacement with granular fill (with or without geosynthetics), and chemical stabilization. The appropriate method of improvement, if required, depends on factors such as schedule, weather, the size of area to be stabilized, and the nature of the instability.

If the exposed subgrade becomes unstable, methods outlines below can be considered.

Scarification and Compaction – It may be feasible to scarify, dry and compact the exposed soils. The success of this procedure would depend primarily upon favorable weather and sufficient time to dry the soils. Stable subgrades likely would not be achievable if the thickness of the unstable soil is greater than about 1 foot, if the unstable soil is at or near the groundwater levels, or if construction is performed during a period of wet or cool weather when drying is difficult.

Crushed Stone – The use of crushed stone or crushed gravel is the most common procedure to improve subgrade stability. Typical undercut depths would be expected to range from about 6 to 30 inches below the finished subgrade elevation. The use of high modulus geosynthetics (i.e., geotextile or geogrid) can also be considered after underground work such as utility construction is completed. Prior to placing the geotextile or geogrid, we recommend that all below-grade construction, such as utility line installation, be completed to avoid damaging the geosynthetics. Equipment should not be operated above the geosynthetics until one full lift of crushed stone fill is placed above it. The maximum particle size of granular material placed over the geosynthetics should conform to the manufacturer's recommendations and generally should not exceed 1½ inches.

Furhter evaluation of the need for subgrade stabilization should be provided by a qualified geotechnical engineer during construction as the subgrade conditions are exposed on a broad scale.

Temporary excavations will probably be required during grading operations. As a minimum, excavations should be performed in accordance with OSHA 29 CFR, Part 1926, Subpart P, "Excavations" and its appendices, and in accordance with any applicable local, and/or state regulations.

Construction site safety is the sole responsibility of the contractor who controls the means, methods, and sequencing of construction operations. Under no circumstances shall the information provided herein be interpreted to mean Terracon is assuming any responsibility for construction site safety, or the contractor's activities; such responsibility shall neither be implied nor inferred.

Construction Observation and Testing

The earthwork efforts should be monitored under the direction of the Geotechnical Engineer. This monitoring should include documentation of adequate removal of vegetation and topsoil, proof-rolling and mitigation of areas delineated by the proof-roll to require mitigation. In the event unanticipated conditions are encountered, the Geotechnical Engineer should prescribe mitigation options.

In addition to the documentation of the essential parameters necessary for construction, the continuation of the Geotechnical Engineer into the construction phase of the project provides the continuity to maintain the Geotechnical Engineer's evaluation of subsurface conditions, including assessing variations and associated design changes.

Job No. 070415 Staves, Cleveland County, Arkansas September 28, 2018 Terracon Project No. 35185047.R1

PRELIMINARY SHALLOW FOUNDATIONS

No information was provided regarding the bridge design at the time of this report. Typically bridges are designed with wingwalls or retaining wall structures located on the embankments. Based on the findings from our borings and the observed low-strength soils in a majority of the borings, it is our opinion that any planned wingwalls or retaining walls associated with the new bridge be supported on driven pile foundations. Shallow foundation support would require significant subgrade improvement to avoid bearing on the very soft soils encountered in our borings; additional structure information (such as planned grades) and consultation with our geotechnical engineer would be required to analyze and develop recommendations for shallow foundations.

LATERAL EARTH PRESSURE

For planned wingwall or retaining walls planned at the bridge locations, the following lateral earth pressures can be utilized.

Lateral Earth Pressure Design Parameters				
Earth Pressure	Coefficient for	Surcharge	Effective Fluid Pressures (psf) ^{4,5}	
Condition ¹	Backfill Type Pressure ^{2, 3, 4} p ₁ (psf)	Unsaturated ⁶	Submerged ⁶	
Active (Ka)	Granular - 0.31	(0.31)S	(40)H	(80)H
	Fine Grained - 0.41	(0.41)S	(50)H	(85)H
At-Rest (Ko)	Granular - 0.47	0.47)S	(55)H	(90)H
	Fine Grained - 0.58	(0.58)S	(70)H	(95)H
Passive (Kp)	Granular - 3.25		(390)H	(250)H
	Fine Grained - 2.46		(295)H	(205)H

1. For active earth pressure, wall must rotate about base, with top lateral movements 0.002 H to 0.004 H, where H is wall height. For passive earth pressure, wall must move horizontally to mobilize resistance

2. Uniform surcharge, where S is surcharge pressure.

3. Loading from heavy compaction equipment is not included in surcharge or earth pressures

4. No safety factor is included in these values.

5. Uniform, final graded backfill, compacted to at least 95 percent of the ASTM D 698 maximum dry density, rendering a maximum unit weight of 120 pcf

6. In order to achieve "Unsaturated" conditions, wall drainage must be provided. "Submerged" conditions are recommended when drainage behind walls is not incorporated into the design.

Job No. 070415 Staves, Cleveland County, Arkansas September 28, 2018 Terracon Project No. 35185047.R1

Lateral Earth Pressure Design Parameters				
Earth Pressure	Coefficient for	Surcharge	Effective Fluid Pressures (psf) ^{4, 5}	
Condition ¹	Backfill Type	II TypePressure 2, 3, 4p1 (psf)	Unsaturated ⁶	Submerged ⁶
Active (Ka)	Granular - 0.31	(0.31)S	(40)H	(80)H
	Fine Grained - 0.41	(0.41)S	(50)H	(85)H
At-Rest (Ko)	Granular - 0.47	0.47)S	(55)H	(90)H
	Fine Grained - 0.58	(0.58)S	(70)H	(95)H
Passive (Kp)	Granular - 3.25		(390)H	(250)H
	Fine Grained - 2.46		(295)H	(205)H

7. For active earth pressure, wall must rotate about base, with top lateral movements 0.002 H to 0.004 H, where H is wall height. For passive earth pressure, wall must move horizontally to mobilize resistance

- 8. Uniform surcharge, where S is surcharge pressure.
- 9. Loading from heavy compaction equipment is not included in surcharge or earth pressures
- 10. No safety factor is included in these values.
- 11. Uniform, final graded backfill, compacted to at least 95 percent of the ASTM D 698 maximum dry density, rendering a maximum unit weight of 120 pcf
- 12. In order to achieve "Unsaturated" conditions, follow guidelines in Subsurface Drainage for Below Grade Walls below. "Submerged" conditions are recommended when drainage behind walls is not incorporated into the design.

DEEP FOUNDATIONS

Driven pile foundations have been analyzed for support of the proposed bridge bents based on the geotechnical data available from the borings performed in the vicinity of the structure. Driven piles capacities for compressive loads were estimated in accordance with procedures and recommendations outlined in Article 10.5.5.2.3 of 2017 AASHTO LRFD Bridge Design Specifications 6th Edition.

Soil Strength Parameters

Driven pile parameters used to determine the nominal and factored resistances of piles are shown below. The values were developed based on our interpretation of the generalized stratigraphy of the borings near each bridge and our experience with the soils in the project area.

Bridge No. M3994 (Borings B-1 and B-2)

Job No. 070415 Staves, Cleveland County, Arkansas September 28, 2018 Terracon Project No. 35185047.R1

		Driven Pipe	Pile Parameters	
Approximate depth below ground surface (feet)	Material	Unit Weight (pcf)	Undrained Shear Strength (psf)	Friction Angle (°)
5	Fill: Lean clay	115	500	N/A
20	20 Lean clay, lean clay with sand, fat clay with sand		500	N/A
30	Sandy lean clay and silty sand	115	750 (B-1)	30 (B-2)
40	Poorly graded sand and poorly graded sand with gravel	115	N/A	32
100	Fat clay, sandy fat clay, fat clay with sand, sandy lean clay, and lean clay with sand	120	2,500	N/A

Stratum		ximate D om of Str (feet)	-	Material Description	Unit Weight	Undrained Shear Strength	Friction Angle
	B-3	B-4	B-5		(pcf)	(psf)	(°)
1	5	5	5	Fill: Poorly graded sand, lean clay with sand, and sandy lean clay	115	250	
2	18.5	13.5	18.5	Sandy lean clay and lean clay	115	300	
3	23.5	18.5	33.5	Silty sand, poorly graded sand with silt and clayey sand	115		30
4	28	23.5		Fat clay and sandy lean clay	115	750	
5	43.5	33.5	38.5	Fat clay and sandy lean clay	120	2500	
6	68	85	68.5	Fat clay and sandy lean clay	120	3000	
7	80	100	80	Fat clay and sandy lean clay	125	3500	

Bridge No. M3995 (Borings B-3, B-4, and B-5)

Driven Pile Resistances

Based on the general profiles above, the driven piles resistances for an open ended pipe with various diameters was determined at different depths. The following tables and graphical representation of the pile capacity for each bridge replacement follows:

Pipe Pile	N	ominal I	Resistar	nce¹ (kip	s)	Factored Compression Resistance ² (kips)							
Depth		Pile Dia	ameter (inches)		Pile Diameter (inches)							
(feet)	12	16	18	20	24	12	16	18	20 24				
40	80	130	155	190	235	40	65	75	95	120			
50	140	205	240	260	325	70	100	120	130	160			
60	180	270	315	345	425	90	135	135	155	170	210		
70	230	325	375	425	520	115	160	185	210	260			
80	280	395	455	500	615	140	195	225	250	305			

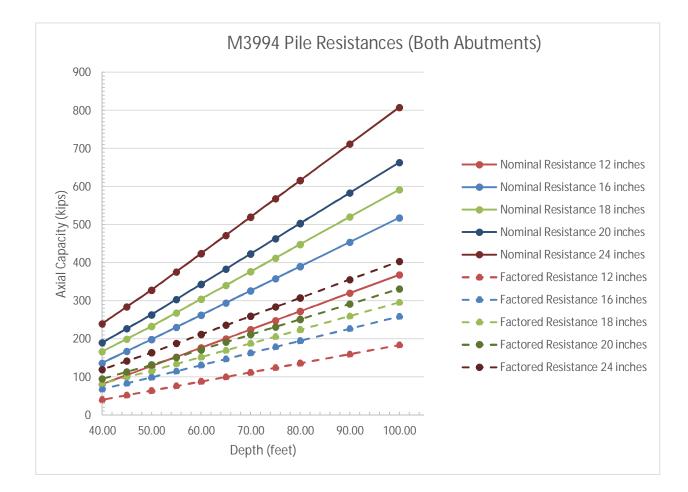
Bridge No. M3994 Boring B-1

1. These nominal resistances are applicable if the center-to-center spacing of the piles is equal to or greater than 3 times the maximum pile section dimension

2. The factored resistance values are based on the nominal resistance multiplied by the structural resistance factor of 0.5 from **Resistance Factors for Geotechnical Resistance of Driven Piles**, $\boldsymbol{\phi}$ [AASHTO 10.5.5.2.3-1]. The resistance factor can be increased if pile dynamic analysis or wave equation analyses is specified to be performed prior to construction.

Pipe Pile	N	ominal I	Resistar	nce¹ (kip	os)	Factored Compression Resistance ² (kips)							
Depth		Pile Dia	ameter (inches)		Pile Diameter (inches)							
(feet)	12	16 18 20		20	24	12	16	18	20	24			
40	80	135	165	190	240	40	65	80	95	120			
50	130	200	230	265	325	65 100	100115130150	130	160				
60	175	260	305	345	425	85		150	170 210	210			
70	225	325	375	425	520	110	160	185		260			
80	270	390	445	45 500 615 13			195	220	250	305			

Bridge No. M3994 Boring B-2


1. These nominal resistances are applicable if the center-to-center spacing of the piles is equal to or greater than 3 times the maximum pile section dimension

The factored resistance values are based on the nominal resistance multiplied by the structural resistance factor of 0.5 from Resistance Factors for Geotechnical Resistance of Driven Piles, φ [AASHTO 10.5.5.2.3-1]. The resistance factor can be increased if pile dynamic analysis or wave equation analyses is specified to be performed prior to construction.

Because of the similarities in calculated resistances for Boring B-1 and B-2 on Structure M3994, the graphed resistances have been presented on one graph below.

Job No. 070415 Staves, Cleveland County, Arkansas September 28, 2018 Terracon Project No. 35185047.R1

Pipe Pile	N	ominal I	Resistar	nce ¹ (kip	s)	Factored Compression Resistance ² (kips)							
Depth		Pile Dia	ameter (inches)		Pile Diameter (inches)							
(feet)	12	16	18	20	24	12	16	18	20	24			
50	155	210	235	265	335	75	105	115	130	165			
60	195	260	295	335	415	95	130	145	165	205			
70	240	325	365	410	510	120	160	180	205	255			
80	280	375	425	480	595	140	185	210	240	295			

Bridge No. M3995 Boring B-3

1. These nominal resistances are applicable if the center-to-center spacing of the piles is equal to or greater than 3 times the maximum pile section dimension

The factored resistance values are based on the nominal resistance multiplied by the structural resistance factor of 0.5 from Resistance Factors for Geotechnical Resistance of Driven Piles, φ [AASHTO 10.5.5.2.3-1]. The resistance factor can be increased if pile dynamic analysis or wave equation analyses is specified to be performed prior to construction.

September 28, 2018 Terracon Project No. 35185047.R1

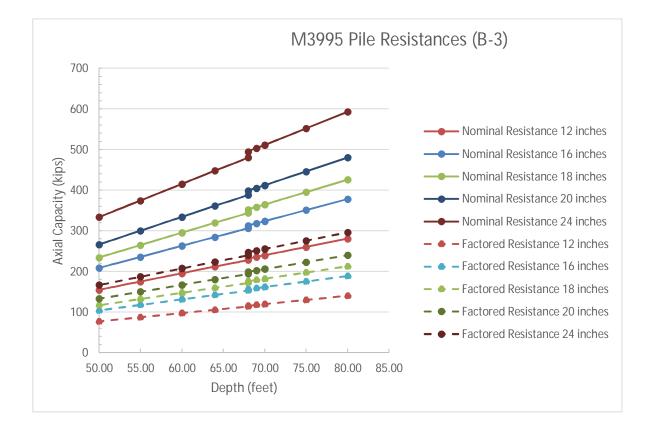
Pipe Pile	N	ominal I	Resistar	nce ¹ (kip	os)	Factored Compression Resistance ² (kips) Pile Diameter (inches)							
Depth		Pile Dia	ameter (inches)									
(feet)	12	16	18	20	24	12	16	18	20	24			
50	160	210	235	270	335	80	105	115	135	165			
60	200	265	300	335	420	100	130	150	165	210			
70	240	320	360	405	500	120	120 160	180	200	250			
80	280	375	420	475	580	140	185	210	235	290			

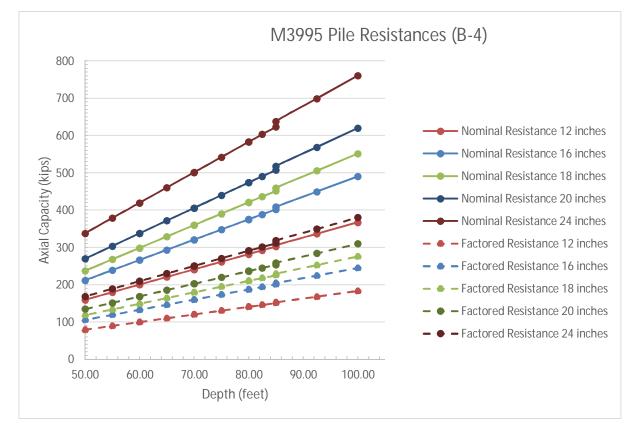
Bridge No. M3995 Boring B-4

1. These nominal resistances are applicable if the center-to-center spacing of the piles is equal to or greater than 3 times the maximum pile section dimension

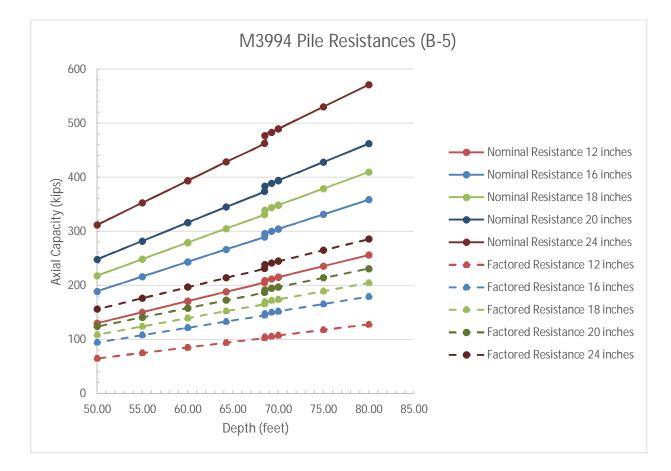
The factored resistance values are based on the nominal resistance multiplied by the structural resistance factor of 0.5 from Resistance Factors for Geotechnical Resistance of Driven Piles, φ [AASHTO 10.5.5.2.3-1]. The resistance factor can be increased if pile dynamic analysis or wave equation analyses is specified to be performed prior to construction.

Bridge No. M3995 Boring	у В-5
-------------------------	-------


Pipe Pile	N	ominal I	Resistar	nce¹ (kip	s)	Factored Compression Resistance ² (kips)							
Depth		Pile Dia	ameter (inches)		Pile Diameter (inches)							
(feet)	12	16	18	20	24	12	16	18	20	24			
50	130	190	215	250	310	65	95	105	125	155			
60	170	240	280	315	395	85	120	140	155	195			
70	215	305	350	395	490	105	150	175	195	245			
80	255	360	60 410		570	125	180	205	230	285			


3. These nominal resistances are applicable if the center-to-center spacing of the piles is equal to or greater than 3 times the maximum pile section dimension

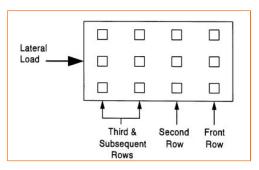
The factored resistance values are based on the nominal resistance multiplied by the structural resistance factor of 0.5 from Resistance Factors for Geotechnical Resistance of Driven Piles, φ [AASHTO 10.5.5.2.3-1]. The resistance factor can be increased if pile dynamic analysis or wave equation analyses is specified to be performed prior to construction.


Job No. 070415 Staves, Cleveland County, Arkansas September 28, 2018 Terracon Project No. 35185047.R1

Job No. 070415 Staves, Cleveland County, Arkansas September 28, 2018 Terracon Project No. 35185047.R1

Wall thickness for pipe piles should be selected in consideration of the design nominal resistance (or conversely, the maximum nominal resistance, or structural limit state, should be established for the selected PP section). The critical event occurs during driving, and pile stresses should be maintained less than 0.9^*F_y to reduce the potential for damage to the pile, where F_y = yield strength of the steel. This driving stress was often correlated to a maximum allowable design capacity of $0.25^*F_y^*A_{st}$ using ASD methods (where A_{st} = cross sectional steel area). For LRFD design methods, resistance factors for the strength limit state are provided in AASHTO Article 6.5.4.2 for pipe pile sections; use of a pile tip is not considered necessary on these sites.

Driven Pile Lateral Loading


The strength parameters listed in the Soil Strength Parameters can be used as input values for use in LPILE analyses. LPILE will estimate values of k_h and E_{50} based on the provided strength values.

When piles are used in groups, the lateral resistances of the piles in the second, third, and subsequent rows of the group should be reduced as compared to the resistance of a single,

independent pile. Guidance for applying p-multiplier factors to the p values in the p-y curves for each row of pile foundations within a pile group are as follows:

- Front row: $P_m = 0.8$;
- Second row: P_m = 0.4
- Third and subsequent row: $P_m = 0.3$.

The load resistances provided herein are based on the

stresses induced in the supporting soil strata. The structural capacity of the piles should be checked to assure that they can safely accommodate the combined stresses induced by axial and lateral forces. Lateral deflections of piles should be evaluated using an appropriate analysis method, and will depend upon the pile's diameter, length, configuration, stiffness and "fixed head" or "free head" condition. We can provide additional analyses and estimates of lateral deflections for specific loading conditions upon request. The load-carrying capacity of piles may be improved by increasing the diameter of pipe piles.

Driven Pile Construction Considerations

The contractor should select a driving hammer and cushion combination which can install the selected piling without overstressing the pile material. The hammer should have a rated energy in foot-pounds at least equal to 15 percent of the design compressive load capacity in pounds. The contractor should submit the pile driving plan and the pile hammer-cushion combination to the engineer for evaluation of the driving stresses in advance of pile installation. During driving a maximum of 10 blows per inch is recommended to reduce the potential of damage to the piles.

If practical refusal is experienced above the anticipated rock surface elevation, then the pile may be on a boulder or other obstruction and a replacement pile should be driven. If this occurs, the situation should be evaluated by Terracon during the pile driving operations.

Difficult driving could also be encountered in the weathered rock. Consideration should be given to using protective points and/or flange stiffening if H-piles are used. The contractor should be prepared to cut or splice piles, as necessary. Splicing of piles should be in accordance with specifications provided by the project structural engineer.

Pile driving conditions, hammer efficiency, and stress on the pile during driving could be better evaluated during installation using a Pile Driving Analyzer (PDA). A Terracon representative should observe pile driving operations. Each pile should be observed and checked for buckling, crimping and alignment in addition to recording penetration resistance, depth of embedment, and general pile driving operations.

The pile driving process should be performed under the direction of the Geotechnical Engineer. The Geotechnical Engineer should document the pile installation process including soil/rock and groundwater conditions encountered, consistency with expected conditions, and details of the installed pile.

Excavations for pile caps should be evaluated under the direction of a Geotechnical Engineer. The base of all excavations should be free of water and loose soil, prior to placing concrete. Concrete should be placed soon after excavating to reduce bearing soil disturbance. Care should be taken to prevent wetting or drying of the bearing materials during construction. Excessively wet or dry material or any loose/disturbed material in the bottom of the footing excavations should be removed/reconditioned before foundation concrete is placed.

SEISMIC CONSIDERATIONS

The seismic design requirements for buildings and other structures are based on Seismic Design Category. Site Classification is required to determine the Seismic Design Category for a structure. The Site Classification is based on the upper 100 feet of the site profile defined by a weighted average value of either shear wave velocity, standard penetration resistance, or undrained shear strength in accordance with 2009 AASHTO Guide Specifications for LRFD Seismic Bridge Design.

Description	Value
2009 AASHTO Guide Specifications for LRFD Seismic Bridge Design	D ¹
Site Latitude ²	34.0459 ° N
Site Longitude ²	92.2326° W
S _{DS} Spectral Acceleration for a Short Period ³	0.352g
S _{D1} Spectral Acceleration for a 1-Second Period ³	0.179g

1. The 2009 AASHTO Guide Specifications for LRFD Seismic Bridge Design uses a site profile extending to a depth of 100 feet for seismic site classification. Borings at this site were extended to a maximum depth of 100 feet. . Geophysical testing may be performed to confirm the conditions below the current boring depth.

2. Site latitude and longitude are at an arbitrary location between the two bridge replacement structures. Values for the reported spectral accelerations have been calculated at this midpoint location.

3. These values were obtained using online seismic design maps and tools provided by the USGS (<u>http://earthquake.usgs.gov/hazards/designmaps/</u>).

GENERAL COMMENTS

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in the final report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our scope of services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third party beneficiaries intended. Any third party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client, and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES

Field Exploration

Our field exploration work included the drilling and sampling of exploratory soil borings consistent with the following schedule:

Number of Borings	Planned Boring Depth (feet) ¹	Planned Location
5	80 to 100	Bridge borings
8	10	Roadway and shoulder borings
1. Below existing grou	Ind surface	·

The locations of field exploration points (borings) were measured in the field by Terracon's exploration team using a hand-held GPS unit to measure the latitude and longitude coordinates. The accuracy of the exploration points is usually within about +/-20 feet horizontally of the noted location. It is our understanding Michael Baker also surveyed the boring locations. The Northing and Easting coordinates and ground surface elevations of the borings were provided by Michael Baker from a performed field survey.

We advanced the soil borings with a track-mounted drill rig using continuous flight augers (solid stem and/or hollow stem) and/or and rotary wash techniques, as necessary, depending on soil conditions. Five samples are obtained in the upper 10 feet of each boring and at intervals of 5 feet thereafter. We obtained representative samples primarily by the split-barrel sampling procedure. In the split-barrel sampling procedure, a standard, 2-inch O.D., split-barrel sampling barrel was driven into the boring with a 140-pound SPT (Standard Penetration Test) hammer falling 30 inches. We recorded the number of blows required to advance the sampling barrel the last 12 inches of an 18-inch sampling interval as the standard penetration resistance value, N. This value is used to estimate the in-situ relative density of cohesionless soils, consistency of cohesive soils. Soil samples obtained by the SPT were placed in containers and taken to our laboratory.

An automatic SPT hammer was used to advance the split-barrel sampler in the boreholes. A significantly greater efficiency is achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. This higher efficiency has an appreciable effect on the SPT-N value. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report.

We reported the sampling depths, penetration distances, hand penetrometer test values, and the standard penetration resistance values on the boring logs. In the field the samples were tagged, placed the samples into containers, sealed to reduce moisture loss, and taken to our laboratory for observation, testing and classification.

Groundwater observations were also recorded while drilling by dry auger. Because the rotarywash/rock coring technique introduced water and drilling mud into the borehole, we were unable to record accurate groundwater readings during drilling operations by that method or immediately after boring completion.

Our exploration team prepares field boring logs as part of standard drilling operations, these include sampling depths, penetration distances, and other relevant sampling information. Field logs include visual classifications of materials encountered during drilling, and our interpretation of subsurface conditions between samples. Final boring logs, prepared from field logs, represent the geotechnical engineer's interpretation, and include modifications based on observations and laboratory tests.

All borings were backfilled immediately after their completion with auger cuttings and/or bentonite chips. Excess auger cuttings were disposed of on the site by spreading around the boring location. Because backfill material often settles below the surface after a period of time, you should observe the exploration points periodically for signs of depressions and backfill them if necessary. We could provide this service at your request, but this would involve additional costs.

Laboratory Testing

Representative soil samples were tested in the laboratory to measure their natural water content, gradation and Atterberg limits. The test results are provided on the appended boring logs and laboratory test reports.

The soil samples were classified in the laboratory based on visual observation, texture, plasticity, and the laboratory testing described above. The soil descriptions presented on the boring logs are in accordance with the enclosed General Notes and Unified Soil Classification System (USCS). The estimated USCS group symbols for native soils are shown on the boring logs, and a brief description of the USCS is included in this report.

Resilient Modulus Testing

Bulk Samples were obtained from the shoulder Borings and Resilient Modulus testing in accordance with AASHTO T307-99 was performed on the combined sample from each bridge. For structure M3994 a resilient modulus of 6,095 psi was calculated for the on-site material. For structure M3995 a resilient modulus of 6,030 psi was determined for the on-site material.

SITE LOCATION AND EXPLORATION PLANS

SITE LOCATION PLAN

Bayou Derriseaux Structures and Approaches Staves, Arkansas July 31, 2018 Terracon Project No. 35185047

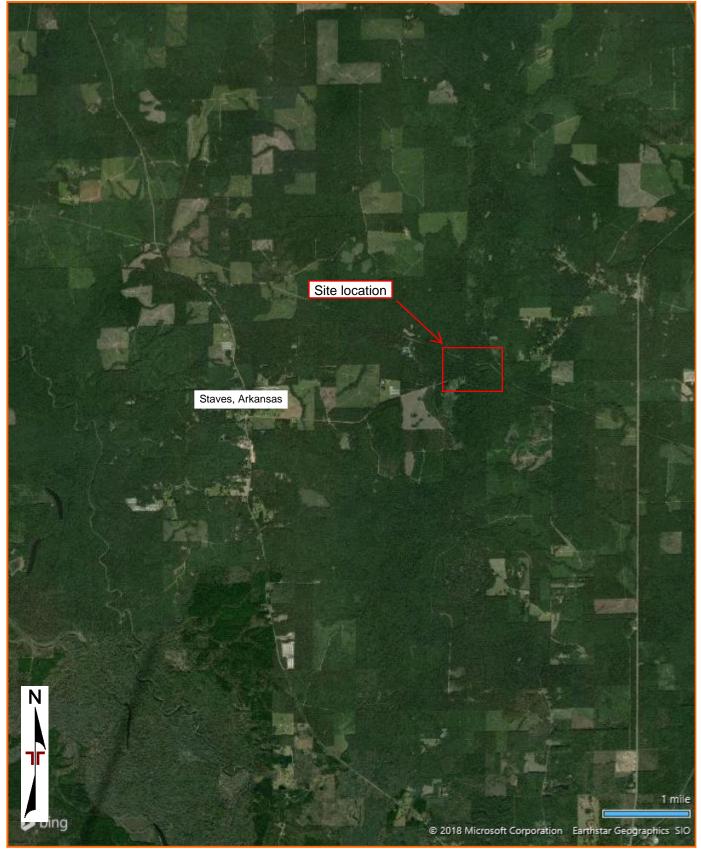


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

EXPLORATION PLAN

Bayou Derriseaux Structures and Approaches Staves, Arkansas July 31, 2018 Terracon Project No. 35185047

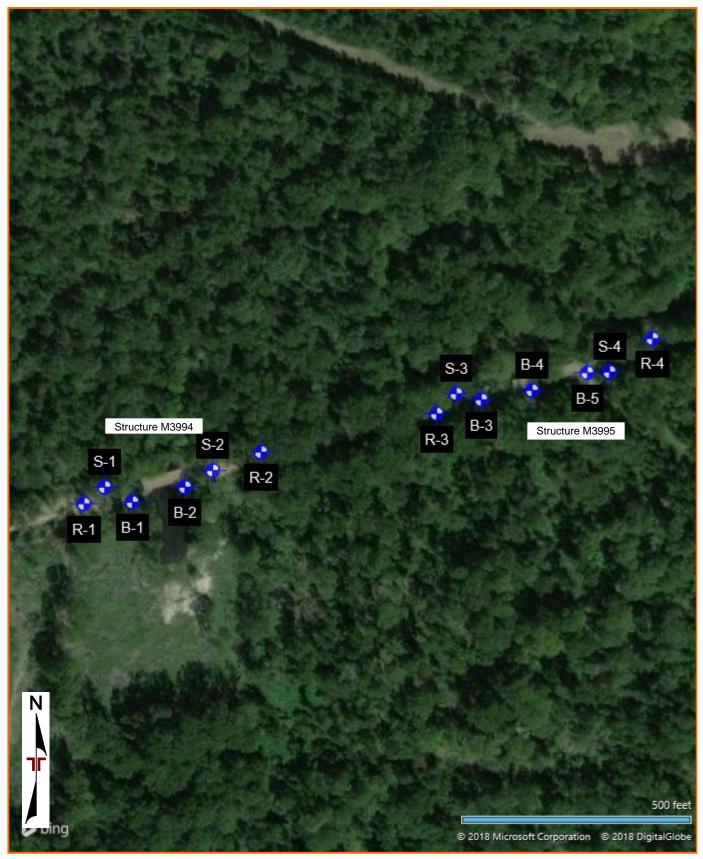


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS **EXPLORATION RESULTS**

	E	BORING LC)g n	IO .	B -'	1				F	Page 1 of 4	4
PR	OJECT: Bayou Derriseaux Structures a Approaches	nd	CLIEN	IT: M Li	licha ittle	ael E Roc	Bake k, A	er Internationa Arkansas	al, Inc			
SIT	E: Highway 212 Staves, Arkansas											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.0455° Longitude: -92.2341° Northing: 1814182.807 Easting: 1241394.331 DEPTH	Surface Elev.: 188.63 ELEVATIC		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pď)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	0.5 ASPHALTIC CEMENT CONCRETE - 7 inches FILL - LEAN CLAY (CL), trace sand and grave	dark brown and	188	_				14-4-3				
	grayish brown	a, uark brown and		_		Д		N=7	25			
				_		\mathbb{X}		2-3-3 N=6	23			
	5.0		192 5	-		\square		2-3-3 N=6	22			
	<u>LEAN CLAY WITH SAND (CL)</u> , trace gravel, b medium stiff	rown and gray,	183.5	5 —		\square		2-2-2 N=4	25		48-19-29	76
				_	-			N-4				
				10		\mathbb{X}		2-2-2 N=4	28			
	13.5		175	10— _ _	-							
	LEAN CLAY (CL), trace sand, brown and gray	, medium stiff		-		\square		2-2-2 N=4	28			
	18.5		170	15 - -	-							
	SANDY LEAN CLAY (CL), brown and gray, me	edium stiff		-		\square		3-4-4 N=8	21		37-14-23	50
				20 - - 25	-			3-3-3 N=6	22			
				-	-							
	28.5		160									
	Stratification lines are approximate. In-situ, the transition may	/ be gradual.				На	mmer	Type: Automatic				
0 to 10 t Aband	cement Method: 10 feet: Solid-stem auger o 100 feet: Wash boring onment Method: ng backfilled with Auger Cuttings	See Exploration and Testi description of field and lab used and additional data (See Supporting Information symbols and abbreviation	boratory p (If any). on for expl	rocedur	res	Not	es:					
	WATER LEVEL OBSERVATIONS					Borin	g Star	ted: 05-02-2018	Borir	ng Com	oleted: 05-02-2	2018
	Water level not determined	lerra	JC			Drill I	Rig: C	ME 850X No. 884	Drille	er: DB		
		25809 Brvant.	1 30			Proie	ct No.	: 35185047				

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX. GPJ TERRACON_DATATEMPLATE.GDT 8/15/18

	BORING		Ю.	B-′	1				F	Page 2 of 4	4
PR	OJECT: Bayou Derriseaux Structures and Approaches	CLIEN	IT: M Li	licha ittle	iel I Ro	Bake ck, A	er Internation Arkansas	nal, Ind			
SIT	E: Highway 212 Staves, Arkansas										
GRAPHIC LOG		88.6310 (Ft.) VATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-Pi	PERCENT FINES
	POORLY GRADED SAND WITH SILT (SP-SM), trace gravel, fine to coarse grained, brown, medium dense - travel gravel below about 32 feet		- 30 -	-	X		7-7-7 N=14	18			7
			- - 35	-	X		4-3-7 N=10	22			
	38.5 FAT CLAY (CH) , brown and gray, stiff to very stiff	150	- - 40	-	X		5-7-9 N=16	35		97-31-66	99
			- - 45	-	X		5-7-7 N=14	41			
	- sand seams below about 48.5 feet		- - 50 -	-	X		6-8-11 N=19	38			
Advan 0 to 10 t			- - 55	-	X		6-7-10 N=17	34			
	Stratification lines are approximate. In-situ, the transition may be gradual.			1	Ha	ammer	Type: Automatic				
	cement Method: See Exploration and description of field a used and additional 10 feet: Solid-stem auger used and additional 0 100 feet: Wash boring See Supporting Information Symbols and abbrev onment Method: symbols and abbrev	data (If any). rmation for exp			No	tes:					
Aband Bor	2	130 5809 30 ryant, AR		٦	Drill	Rig: C	ted: 05-02-2018 ME 850X No. 884 : 35185047	_	ng Com er: DB	pleted: 05-02-	2018

PROJECT: Bayou Derriseaux Structures and Approaches SITE: Highway 212 Staves, Arkansas			CLIENT: Michael Baker International, Inc. Little Rock, Arkansas									
58.5	CLAY (CH), brown and gray, stiff to ve		130	- - 60-		X		5-6-8 N=14	26		51-15-36	5
					-							
				- 65 -	-	X		5-7-9 N=16	28			
				- - 70	-	X		6-8-9 N=17	25			
				- - 75-	-	X		5-7-11 N=18	26			
78.5 SANE	Y LEAN CLAY (CL) , gray, very stiff		110	- - - 80 -	-	X		7-7-8 N=15	28		39-15-24	
				- - 85-	-	X		6-8-9 N=17	27			
Stratificatio	n lines are approximate. In-situ, the transition	may be gradual.				Ha	mmer T	ype: Automatic				
Advancement Method: See Exploration and Text 0 to 10 feet: Solid-stem auger description of field and I 10 to 100 feet: Wash boring used and additional data Abandonment Method: See Supporting Information Boring backfilled with Auger Cuttings symbols and abbreviation		a (If any). tion for exp			Not	es:						
WATE Water lev	DC		Boring Started: 05-02-2018 Drill Rig: CME 850X No. 884				Boring Completed: 05-02-20 Driller: DB					

			BORING L	OG N	Ю.	B- 1	1				F	Page 4 of 4	4
PR	OJECT:	Bayou Derriseaux Structures Approaches	and	CLIEN	IT: M Li	licha ittle	iel B Roc	Bake ck, A	er Internationa Arkansas	al, Ind		-	
SIT	E:	Highway 212 Staves, Arkansas											
GRAPHIC LOG		See Exploration Plan 0455° Longitude: -92.2341° 14182.807 Easting: 1241394.331	Surface Elev.: 188.6	6310 (Ft.) FION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
	SANE	Ŋ <mark>Y LEAN CLAY (CL)</mark> , gray, very stiff (cc		ION (FL)	-	-		<u> </u>					
					- 90-	-	X		6-8-11 N=19	24			
	93.5 EAT (to hard	95	_	-							
	- incre	CLAY WITH SAND (CH), gray, very stiff easing sand seams below about 93.5 f	eet		- 95-	-	Х		13-22-25 N=47	32		53-15-38	83
					_	-							
	100.0			88.5	- 100-	-	X		7-9-13 N=22	33			
		g Terminated at 100 Feet	nay be gradual.				Ha	ımmer	Type: Automatic				
Advan	cement Meth			oline Des	dune - C		No						
0 to 10 to	10 feet: Solid o 100 feet: W onment Meth	I-stem auger ash boring	See Exploration and Te description of field and I used and additional data See Supporting Informa symbols and abbreviatio	a (If any). <mark>tion</mark> for exp									
		R LEVEL OBSERVATIONS el not determined	Terr				Borir	ng Stai	rted: 05-02-2018	Borir	ng Com	pleted: 05-02-2	2018
			2580	9 30	Uľ			-	ME 850X No. 884	Drille	er: DB		
			Bryar	nt, AR			Proje	ect No.	: 35185047				

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX. GPJ TERRACON_DATATEMPLATE.GDT 8/15/18

		BORING LO	OG N	Ю.	B-2	2				F	Page 1 of 3	3
PR	OJECT: Bayou Derriseaux Structures a Approaches	Ind	CLIEN	IT: M	licha ittle F	el E Roc	Bake :k. A	r Internationa	al, Ind		0	
SIT				_			, .					
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.0456° Longitude: -92.2337° Northing: 1814226.072 Easting: 1241569.057 DEPTH		9290 (Ft.) 10N (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	0.5 ASPHALTIC CEMENT CONCRETE - 6 inches	<u>i</u>						2.2.2				
	FILL - LEAN CLAY (CL), with sand and grave 2.0 reddish-brown	I, dark brown and	183			Д		3-3-3 N=6	21			
	FAT CLAY WITH SAND (CH), trace gravel, gr medium stiff	ay and brown,		_		X		2-2-3 N=5	23			
				_		Х		2-2-2 N=4	23		51-20-31	84
				5 — _		X		2-3-3 N=6	27			
				-								
				- 10-		X		2-2-2 N=4	28			
	13.5		171.5	-	-							
	LEAN CLAY (CL), trace sand, brown, mediun	n stiff		_		\bigvee		2-3-3 N=6	28			
	18.5		166.5	15 - -				IN=0				
	<u>SILTY SAND (SM)</u> , fine grained, brown and g dense to loose	ray, medium		- 20- - -		X		4-5-5 N=10	22			30
				- 25-		X		3-3-4 N=7	21			
	28.5		156.5	-	-							
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.			I – I	На	mmer	Type: Automatic	1			
0 to 5 to Aband	cement Method: 5 feet: Solid-stem auger 80 feet: Wash boring Ionment Method: ing backfilled with Auger Cuttings	See Exploration and Tes description of field and la used and additional data See Supporting Informat symbols and abbreviatio	aboratory p a (If any). <mark>tion</mark> for exp	procedur	res	Not	es:					
	WATER LEVEL OBSERVATIONS Water level not determined			-		Borin	g Star	ted: 05-01-2018	Borir	ng Com	pleted: 05-01-2	2018
	valer iever not determined	Jlerra				Drill I	Rig: C	ME 850X No. 884	Drille	er: DB		
		25809 Bryar	9 I 30 nt, AR			Proje	ct No.	: 35185047				

			BORING L	OG N	10.	B-2	2				F	Page 2 of 3	3
PR	ROJECT: Bayou Derriseaux Structures and Approaches ITE: Highway 212 Staves, Arkansas LOCATION See Exploration Plan Latitude: 34.0456° Longitude: -92.2337° Northing: 1814226.072 Easting: 1241569.057 Surface Elev:: 184.925 DEPTH ELEVATIO POORLY GRADED SAND WITH GRAVEL (SP) fine to coarse grained, gray, medium dense to very dense 38.5 EAT CLAY (CH), trace sand, brown and gray, very stiff, laminated and blocky, occasional sand seams	CLIEN	IT: M Li	licha ittle l	el E Roc	Bake ck, A	er Internation Arkansas	al, In		<u> </u>			
SIT	E:	Highway 212											
GRAPHIC LOG	Latitude: 34. Northing: 18	0456° Longitude: -92.2337°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
	POOF		P), fine to coarse		_	-	X	<u> </u>	11-10-8 N=18	11			3
					30 - - -				13-33-38	25			
				146.5	35 - -	_ 2	\land		N=71	20			
	FAT (lamin	CLAY (CH), trace sand, brown and gray ated and blocky, occasional sand sean	r, very stiff, 1s		 40 -	_ 2	X		13-15-15 N=30	42			
					- 45 -	- - -	X		6-7-9 N=16	42		101-28-73	97
					- 50 -		X		6-8-10 N=18	40			
		CLAY (CH), gray, very stiff		131.5	- 55 -		X		6-8-10 N=18	34			
	Stratificatio	on lines are approximate. In-situ, the transition m	ay be gradual.			1	На	immer	Type: Automatic	<u> </u>			
0 to 5 to Aband	5 feet: Solid- 80 feet: Was	stem auger h boring od:	description of field and l used and additional data See Supporting Informa	laboratory a (If any). tion for exp	procedur	res	Not	es:					
							Borin	ng Star	ted: 05-01-2018	Borir	ng Com	pleted: 05-01-2	2018
	vvalet iev						Drill I	Rig: C	ME 850X No. 884	Drille	er: DB		
							Proje	ect No.	: 35185047				

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX. GPJ TERRACON_DATATEMPLATE.GDT 8/15/18

			BORING L	OG N	10.	B- 2	2				F	Page 3 of 3	3
PR	OJECT:	Bayou Derriseaux Structures Approaches	and	CLIEN	IT: N L	licha ittle	ael E Roe	Bake ck, A	er Internation Arkansas	al, In	с.	-	
SIT	'E:	Highway 212 Staves, Arkansas											
GRAF	Latitude: 34	N See Exploration Plan .0456° Longitude: -92.2337° .14226.072 Easting: 1241569.057	Surface Elev.: 184. ELEVAT	9290 (Ft.) TION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	<u>FAT (</u>	CLAY (CH), gray, very stiff (continued)			- - 60-	-	\mathbb{X}		6-8-8 N=16	32		70-22-48	87
					-	-			6-8-7				
					65- - -				N=15	28			
					- 70	-	\times		6-8-8 N=16	29			
	73.5 FAT (CLAY WITH SAND (CH), gray, very stiff	:	111.5	- - 75-	-	\mathbf{X}		6-8-10 N=18	27		54-17-37	78
Advance	80.0 Borir	ng Terminated at 80 Feet		105	- - - 80-	-	X		6-7-8 N=15	25			
	Stratificatio	on lines are approximate. In-situ, the transition m	ay be gradual.				Ha	ammer	Type: Automatic				
0 to 5 to	cement Meth 5 feet: Solid- 80 feet: Was onment Meth ng backfilled	stem auger h boring	See Exploration and Te description of field and I used and additional data See Supporting Informa symbols and abbreviation	aboratory p a (If any). tion for exp	procedu	res	Not	tes:					
Aband Bori		R LEVEL OBSERVATIONS vel not determined		9 I 30 nt, AR	OI	٦	Drill	Rig: C	rted: 05-01-2018 IME 850X No. 884 .: 35185047		ng Com er: DB	pleted: 05-01-	2018

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX. GPJ TERRACON DATATEMPLATE.GDT 8/15/18

		BORING L	OG N	10.	R-′	1				F	Page 1 of	1
PR	OJECT: Bayou Derriseaux Structures a Approaches	and	CLIEN	IT: N L	licha ittle	ael I Ro	Bake ck, <i>I</i>	er Internationa Arkansas	ıl, Ind	C.		
SIT	E: Highway 212 Staves, Arkansas											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.0455° Longitude: -92.2344° Northing: 1814136.23 Easting: 1241254.002 DEPTH	Surface Elev.: 184.6 ELEVAT	ION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	0.3 <u>ASPHALTIC CEMENT CONCRETE - 3 inches</u> <u>FILL - FAT CLAY (CH)</u> , with sand, gray 2.0	8		_	-	\mathbf{X}		3-4-4 N=8	20			
	LEAN CLAY WITH SAND (CL), trace gravel, medium stiff	brown and gray,	182.5	-	-	\square		2-2-2 N=4	8		40-19-21	70
				-		\square		1-2-2 N=4	20			
				5-		\square		2-2-3 N=5	24		47-19-28	81
				_								
	10.0		174.5	- 10-	-	\mathbf{X}		2-2-3 N=5	26			
	Stratification lines are approximate. In-situ, the transition ma							Type: Automatic				
	cement Method: 10 feet: Solid-stem auger	See Exploration and Tes	sting Proce	dures fo	or a		tes:					
Aband	onment Method: ng backfilled with Auger Cuttings	description of field and l used and additional data See Supporting Informa symbols and abbreviatio	a (If any). tion for exp									
	WATER LEVEL OBSERVATIONS No free water observed	lerr				Borii	ng Sta	rted: 05-01-2018	Borir	ng Com	pleted: 05-01-	2018
		2580	9 I 30 nt, AR				-	:: 35185047	Drille	er: DB		

Page 1 of 1

P	ROJECT: Bayou Derriseaux Structures and Approaches	CLIEN	IT: M Li	licha ittle	iel E Roc	Bake k, A	er Internationa Arkansas	al, Ind	C.		
S	ITE: Highway 212 Staves, Arkansas										
GRAPHIC LOG		.6370 (Ft.) TION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-Pi	PERCENT FINES
	0.3.∧ <u>ASPHALTIC CEMENT CONCRETE - 3 inches</u> <u>FILL - SANDY LEAN CLAY (CL)</u> , trace gravel, brown and dark 2.0 gray		_	-	X		12-5-5 N=10	21			
	FILL - FAT CLAY WITH SAND (CH), trace gravel, gray and dark brown	182.5	-		\square		2-3-2 N=5	19			
8/15/18	5.0	179.5	-		\square		3-3-3 N=6	19		50-20-30	73
ATE.GDT	LEAN CLAY (CL), trace sand, gray and brown, medium stiff		5 — _		X		2-3-3 N=6	20			
IATEMPL			_								
CON_DAT	10.0	174.5	- 10-		X		2-3-2 N=5	27			
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX. GPJ TERRACON_DATATEMPLATE.GDT Image: Imag	Stratification lines are approximate. In-situ, the transition may be gradual.				Ha	mmer	Type: Automatic				
SEPAR ^d	ancement Method: See Exploration and T	esting Proces	dures fo	or a	Not						
0 A B B B B B B B B B B B B B B B B B B	to 10 feet: Solid-stem auger description of field and used and additional da dused and additional da dused and additional da see Supporting Inform symbols and abbreviat	l laboratory pl ita (If any). ation for expl	rocedur	res							
C LOG	WATER LEVEL OBSERVATIONS				Borin	ig Star	rted: 05-01-2018	Borir	ng Com	oleted: 05-01-	2018
	During Drilling by dry auger	30		ר		-	ME 850X No. 884		er: DB		-
THISE	258	09 I 30 ant, AR				-	: 35185047				

				BORING L	OG N	10.	S-'	1				F	Page 1 of	1
	PR	OJECT:	Bayou Derriseaux Structures Approaches	and	CLIEN					er Internationa Arkansas	al, Ind	C.	-	
	SIT	E:	Highway 212 Staves, Arkansas						,-					
	GRAPHIC LOG	Latitude: 34	V See Exploration Plan .0456° Longitude: -92.2343° 114165.586 Easting: 1241318.65	Surface Elev.: 183. FLEVAT	0210 (Ft.) TON (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits	PERCENT FINES
		0.5 FILL	- CLAYEY CHERT GRAVEL (GC), gray - SANDY LEAN CLAY (CL), trace grave			_		\bigtriangledown		3-4-3	17			
						-		\bigcirc		N=7 3-3-4 N=7	17		36-18-18	58
8/15/18						_	_	$\left \right\rangle$		2-2-2 N=4	21			
		5.0 LEAN	I CLAY (CL), with sand, gray and brown	n, medium stiff	178	5-		$\left \right\rangle$		2-2-2 N=4	23			
TEMPLAT						-	-							
WELL 35185047 BAYOU DERRISEAUX .GPJ TERRACON_DATATEMPLATE.GDT		10.0			173	-	_	\mathbf{X}		2-2-2 N=4	25			
TERRAG			ng Terminated at 10 Feet			10-								
UX .GPJ														
RRISEA														
VOU DE														
85047 B/														
ELL 351														
ART LO														
GEO SM														
EPORT.														
SINAL RE														
OM ORIC														
TED FR		Stratificatio	on lines are approximate. In-situ, the transition m	nay be gradual.				Ha	ammer	Type: Automatic				
EPAR ⁴	Ashara			1										
VALID IF S		cement Meth 10 feet: Soli	od: d-stem auger	See Exploration and Te description of field and used and additional dat	aboratory (a (If any).	procedu	res	Not	ies:					
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO		onment Mething backfilled	iod: with Auger Cuttings	 See Supporting Informa symbols and abbreviation 		planatior	n of							
1G LO(R LEVEL OBSERVATIONS					Borir	ng Sta	rted: 05-01-2018	Borir	ng Com	pleted: 05-01-	2018
BORIN		No free v	vater observed]][err	JC			Drill	Rig: C	ME 850X No. 884	Drille	er: DB		
THIS					9 I 30 nt, AR			Proje	ect No	.: 35185047	1			

	В		OG N	10.	S-2	2				F	Page 1 of	1
PR	OJECT: Bayou Derriseaux Structures and Approaches	d	CLIEN	NT: M L	licha ittle	el E Roc	Bake ck, A	er Internationa Arkansas	al, In		0	
SIT	••						·					
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.0457° Longitude: -92.2335° Northing: 1814222.757 Easting: 1241653.627 DEPTH	Surface Elev.: 184.2 ELEVAT	. ,	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-Pi	PERCENT FINES
	0.5 FILL - CHERTY CLAYEY GRAVEL (GC), gray FILL - LEAN CLAY WITH SAND (CL), trace grav and brown			_		X		2-3-2 N=5	17			
				_		X		2-3-4 N=7	22		46-20-26	77
	5.0 LEAN CLAY (CL), trace sand, gray and brown, r	nedium stiff	179	- 5 -	-	$\left\langle \right\rangle$		2-2-2 N=4 1-2-3	19			
				-		\triangle		N=5	29			
	10.0 Boring Terminated at 10 Feet		174	- 10-	-	X		2-2-3 N=5	33			
	Stratification lines are approximate. In-situ, the transition may be cement Method:	e Exploration and Tes	sting Proce	edures fo	ora		tes:	Type: Automatic				
Aband	10 feet: Solid-stem auger de us onment Method: ng backfilled with Auger Cuttings	scription of field and la ed and additional data ee Supporting Informat mbols and abbreviatio	aboratory a (If any). tion for exp	orocedui	res							
	WATER LEVEL OBSERVATIONS No free water observed	Terra					· ·	rted: 05-01-2018	Borir	ng Com	pleted: 05-01-	2018
		25809 Bryan	9 30					ME 850X No. 884 .: 35185047	Drille	er: DB		

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX. GPJ TERRACON DATATEMPLATE.GDT 8/15/18

	BO	RING LC)G N	10.	в-:	3				F	Page 1 of 3	3
PR	OJECT: Bayou Derriseaux Structures and Approaches		CLIEN	IT: M Li	licha ittle	ael E Roc	Bake ck, A	r Internation rkansas	al, Ind	С.		
SI	E: Highway 212 Staves, Arkansas											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.0461° Longitude: -92.2316° Northing: 1814367.404 Easting: 1242188.128			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	ECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS	PERCENT FINES
Ŭ G	DEPTH	urface Elev.: 185.412 ELEVATIC	· í		NA OBS	SAI	RECC		S S	12		ЪЕН
	FILL - POORLY GRADED SAND (SP), with gravel,	red brown	400 5	_		\square		18-16-17 N=33	9			
	2.0 FILL - LEAN CLAY WITH SAND (CL), trace gravel,	brown gray	183.5	_	-	\square		2-2-2 N=4	21		34-23-11	74
	5.0		180.5	-		\mathbb{X}		3-2-2 N=4	17			
	SANDY LEAN CLAY (CL), trace gravel, gray and b medium stiff	rown, soft to		5 — _	-	\square		1-1-1 N=2	20			
				_	-			1-2-2				
				_ 10_	-	X		N=4	24			
				_	-							
	13.5 LEAN CLAY (CL), trace sand, gray brown, very sof	it	172	- 15-	-	X		0-0-0 N=0	28			
				-	-							
	18.5 SILTY SAND (SM), fine grained, gray brown, loose		167	_		\bigtriangledown		3-3-3	22		NP	17
				20- - -	-	\square		N=6	22			
	23.5 FAT CLAY (CH), trace sand, brown and gray, medi very stiff	ium stiff to	162	_	-	$\mathbf{\nabla}$		3-4-3 N=7	40			
Advar 0 to 10 to Bor				25 -	-							
	Stratification lines are approximate. In-situ, the transition may be g	radual.				Ha	ammer	Type: Automatic				
Advar 0 to		xploration and Testi iption of field and lab				Not	tes:					
10 1 Abanc Bor	o 100 feet: Wash boring used a See S	and additional data (Supporting Informations)	(If any). on for exp									
	WATER LEVEL OBSERVATIONS					Borir	ng Star	ed: 05-03-2018	Borir	ng Com	pleted: 05-03-	2018
	Water level not determined	lerra			ר	<u> </u>	-	ME 850X No. 884	-	er: DB		
		25809 I Bryant,	I 30			Proje	ect No.:	35185047	1			

	BC	RING LO	OG N	Ю.	B- 3	3				F	Page 2 of 3	3
PR	OJECT: Bayou Derriseaux Structures and Approaches		CLIEN					er Internation Arkansas	al, Ind).		
SIT												
GRAF	LOCATION See Exploration Plan Latitude: 34.0461° Longitude: -92.2316° Northing: 1814367.404 Easting: 1242188.128 DEPTH	Surface Elev.: 185.4		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-Pi	PERCENT FINES
	FAT CLAY (CH), trace sand, brown and gray, mec very stiff (continued)		<u>ION (Ft.)</u>	-30		X	~	11-13-16 N=29	41		67-22-45	94
	33.5		152	-	-							
	SANDY LEAN CLAY (CL), gray, very stiff to hard			- 35-		X		5-11-18 N=29	31			
				-	-							
				- 40-		X		15-17-27 N=44	33			
	43.5		142	-	-							
	FAT CLAY (CH), trace sand, brown and gray, very laminated and blocky	∕ stiff,		_ 45—		X		4-7-8 N=15	41			
				-	-							
				- 50-		X		5-8-9 N=17	38		95-37-58	99
				_	-							
				- 55-		X		5-7-11 N=18	38			
				-								
	Stratification lines are approximate. In-situ, the transition may be g	gradual.				На	mmer	Type: Automatic	1			<u>.</u>
0 to 10 to	b 100 feet: Wash boring used	Exploration and Tes ription of field and la and additional data Supporting Informat pols and abbreviatio	aboratory p a (If any). tion for exp	procedur	res	Not	es:					
	WATER LEVEL OBSERVATIONS					Borin	a Sta	ted: 05-03-2018	Borin		pleted: 05-03-2	2018
	Water level not determined	llerra	DC		ר		-	ME 850X No. 884		er: DB		
		25809 Bryan				Proje	ct No	: 35185047				

		BORING L	OG N	10.	B- 3	3					Page 3 of 3	3
	CT: Bayou Derriseaux Structu Approaches	ures and	CLIEN	NT: M L	licha ittle	el I Ro	Bake ck, A	er Internation Arkansas	nal, In	с.		
SITE:	Highway 212 Staves, Arkansas											
DI Latitu North	ATION See Exploration Plan de: 34.0461° Longitude: -92.2316° ing: 1814367.404 Easting: 1242188.128	Surface Elev.: 185.	` ´	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	
	[™] FAT CLAY (CH), trace sand, brown and laminated and blocky <i>(continued)</i>		TION (Ft.)				R					
58.5	FAT CLAY (CH), gray, very stiff to harc	I	127	- 60 -	-	X		6-7-10 N=17	29			
				- - 65-	-	X		5-7-9 N=16	32		50-19-31	9
				-	-			6-13-24	26			
				70 - -	-			N=37				
				- 75 -	-	X		6-8-10 N=18	25			
80.0	Boring Terminated at 80 Feet		105.5	- - 80-	-	X		5-8-11 N=19	26			
Stra	tification lines are approximate. In-situ, the trans	sition may be gradual.				Ha	ammer	Type: Automatic				
10 to 100 f	et: Solid-stem auger feet: Wash boring	See Exploration and To description of field and used and additional da See Supporting Informa	ta (If any). ation for exp			No	tes:					
bandonmer. Boring bac	nt Method: ckfilled with Auger Cuttings	symbols and abbreviat	ions.									
	VATER LEVEL OBSERVATIONS											

		BORING LO	OG N	10.	B -4	4				F	Page 1 of 4	4
PR	OJECT: Bayou Derriseaux Structures a Approaches	and	CLIEN					er Internation Arkansas	al, In		0	
SIT				-	ittie		ск, <i>г</i>					
90	LOCATION See Exploration Plan				/EL	ΡE	(sey)	L. C	(%)	ر ا _	ATTERBERG LIMITS	NES
GRAPHIC LOG	Latitude: 34.0462° Longitude: -92.2312°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
	DEPTH 0.5_ASPHALTIC CEMENT CONCRETE - 6 inches	ELEVAT	ION (Ft.)		-							
	FILL - SANDY LEAN CLAY (CL), trace gravel and brown	and asphalt, gray	_	_		\mathbb{X}		3-2-2 N=4	17			
				_				1-1-1 N=2	23			
	F 0			_	-			0-0-0 N=0	23			
	<u>SANDY LEAN CLAY (CL)</u> , brown, very soft			5-		\square		0-0-0 N=0	27			56
				-		-						
				- 10-	-			0-0-0 N=0	22			
	13.5				-							
	WELL GRADED GRAVEL WITH SILT AND S/ fine to coarse grained, brown, dense	and (GW-GM),		-	-			13-20-14 N=34	11			11
	18.5			15 - -	-							
	FAT CLAY (CH), trace sand, brown and gray,	stiff		- 20 -	-			4-5-6 N=11	45			
	22.5			_								
	SANDY LEAN CLAY (CL), with sand seams,	gray, hard		- 25-				14-26-35 N=61	27			
				-	-							
//////////////////////////////////////	Stratification lines are approximate. In-situ, the transition ma	av be gradual					ammei	Type: Automatic				
		., 20 g. aduai.				1 10		. Jps. Automatio				
0 to	vancement Method: See Exploration and Te description of field and used and additional dat			edures fo procedui	or a res	No	tes:					
	donment Method: ring backfilled with Auger Cuttings			olanation	n of							
	WATER LEVEL OBSERVATIONS					Bori	ng Sta	rted: 05-04-2018	Bori	ng Com	pleted: 05-04-	2018
\square	During Drilling by dry auger	lerra	DC		ר		-	:ME 850X No. 884		er: DB		
		2580	9 I 30 nt. AR		•			.: 35185047				

	BORING LOG NO. B-4 Page 2 of 4											
PR	OJECT: Bayou Derriseaux Structures a Approaches	and	CLIENT:	M	ichae ttle F	el E Roc	Bake k, A	r Internation rkansas	al, Ind		_	
SIT	E: Highway 212 Staves, Arkansas											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.0462° Longitude: -92.2312°			UEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	DEPTH SANDY LEAN CLAY (CL), with sand seams, ((continued)	ELEVATI gray, hard		-0 	2	X	<u>~</u>	17-17-18 N=35	35		33-22-11	54
	33.5 SANDY LEAN CLAY (CL). gray, very stiff, lan	ninated	3	_ 		X		6-7-10 N=17	38			
						X		6-7-10 N=17	33			
			4	_ .5	2	X		5-8-10 N=18	33			
	48.5 FAT CLAY (CH), trace sand, gray, very stiff, c seams	occasional sand	5	 50		X		5-6-10 N=16	34		90-23-67	95
	53.5 SANDY LEAN CLAY (CL), gray, stiff to very stiff			- - 5		X		5-6-7 N=13	25			
	Stratification lines are approximate. In-situ, the transition ma	ay be gradual.		_		На	mmer	Type: Automatic				
0 to 10 t Aband	Advancement Method: See Exploration and Testing 0 to 10 feet: Solid-stem auger description of field and labora 10 to 100 feet: Wash boring used and additional data (If a Abandonment Method: See Supporting Information field and abbreviations. Boring backfilled with Auger Cuttings See Support of a structure					Note	es:					
$\overline{}$	WATER LEVEL OBSERVATIONS				E	Borin	g Starl	ted: 05-04-2018	Borir	ng Com	pleted: 05-04-2	2018
	During Drilling by dry auger	lerra			1	Drill F	Rig: Cl	ME 850X No. 884	Drille	er: DB		
		9 I 30 it, AR		F	Proje	ct No.:	35185047					

ſ

	BORING LOG NO. B-4 Page 3 of 4											
PROJECT	: Bayou Derriseaux Structures a Approaches	and	CLIEN	IT: N L	licha ittle	ael I Ro	Bake ck, A	er Internationa Arkansas	al, Ind	C.		
SITE:	Highway 212 Staves, Arkansas					_						
2	DN See Exploration Plan 4.0462° Longitude: -92.2312°	ELEVAT	ION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	IDY LEAN CLAY (CL), gray, stiff to very s			_								
				- 60-	-	X		5-6-8 N=14	27		43-18-25	60
				-	-							
				- 65-	-	X		6-8-8 N=16	24			
					-	X		5-7-9 N=16	28			
				-	-							
				- 75- -	-	X		5-7-9 N=16	28			
78.5 FAT	CLAY WITH SAND (CH), gray, very stiff	to hard		-	-	X		5-7-8 N=15	30		51-18-33	82
				=08 - - -	-							
				- 85-	-	X		6-8-9 N=17	23			
Stratification lines are approximate. In-situ, the transition may be gradual.						Ha	ammer	Type: Automatic				
0 to 10 feet: So 10 to 100 feet:	dvancement Method: 0 to 10 feet: Solid-stem auger 10 to 100 feet: Wash boring See Supporting Inform bandonment Method: See Supporting Inform Symbols and abbrevia				res	No	tes:					
Boring backfille	oring backfilled with Auger Cuttings											
	WATER LEVEL OBSERVATIONS During Drilling by dry auger		DC 9 30		٦	├ ──	-	rted: 05-04-2018 ME 850X No. 884		ng Com er: DB	pleted: 05-04-:	2018
						Proje	ect No	: 35185047				

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX. GPJ TERRACON DATATEMPLATE.GDT 8/15/18

			BORING L	OG N	10.	B -	4				F	Page 4 of	4
		Bayou Derriseaux Structur Approaches	es and	CLIEN	NT: N L	licha ittle	ael I Ro	Bake ck, A	er Internation Arkansas	al, In	С.		
SITE		Highway 212 Staves, Arkansas											
2		See Exploration Plan 0462° Longitude: -92.2312°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	DEPTH		ELEVA	TION (Ft.)	ä	WA: OBS	SAN	RECO	Ēĸ	00	^o y		PER
	(contil	CLAY WITH SAND (CH), gray, very nued)	Stiff to hard		_								
					-				16-16-16 N=32	25			
					90- - -	-							
- dark gray at about 93.5 feet					-	-	X		8-10-10 N=20	32			
					95- - -								
100.0					-	-			8-11-12 N=23	30			
100.0 Boring Terminated at 100 Feet					100-								
	Stratificatio	on lines are approximate. In-situ, the transiti	on may be gradual					mmer	Type: Automatic				
	Strauncauc		on may be gradual.				110		Type. Automatic				
) to 1	ement Metho 0 feet: Solic 100 feet: W	I-stem auger	See Exploration and Te description of field and used and additional dat	laboratory	edures fo procedu	or a res	No	tes:					
	-	with Auger Cuttings	See Supporting Informa symbols and abbreviati		planatior	n of							
7		R LEVEL OBSERVATIONS					Borii	ng Star	ted: 05-04-2018	Bori	ng Com	pleted: 05-04-	2018
	During Di	rilling by dry auger		Boring Started: 05-04-2018 Boring Completed: 05-04-2018 Drill Rig: CME 850X No. 884 Driller: DB									
				09 I 30 int, AR									

	BORING LOG NO. B-5 Page 1 of 3											
PR	OJECT: Bayou Derriseaux Structures ar Approaches	ld	CLIEN	IT: M	licha ittle I	el E Roc	Bake :k, A	er Internationa Arkansas	al, Inc).	-	
SIT	E: Highway 212 Staves, Arkansas											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.0463° Longitude: -92.2307° Northing: 1814424.815 Easting: 1242433.715	Surface Elev.: 184.3 ELEVATI		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	0.3 ASPHALTIC CEMENT CONCRETE - 3 inches							5-8-4				
	AGGREGATE BASE COURSE - 3 inches FILL - SANDY LEAN CLAY (CL), trace gravel, t	prown]	_		Д		N=12	11			
				_		X		3-4-5 N=9	13			
	5.0		179.5	_		Х		3-2-1 N=3	12			
	SANDY LEAN CLAY (CL), with sand seams, br	own, stiff		5 — _		X		8-5-4 N=9	12			
	8.5		176	_								
	CLAYEY SAND (SC), brown, loose			- 10-		X		3-4-4 N=8	12			22
					-							
				- 15-		X		3-3-4 N=7	22			
	18.5		166	-	-							
	SILTY SAND (SM), brown, medium dense			- 20- -	-	X		3-3-11 N=14	23			31
	23.5 CLAYEY SAND (SC), fine to coarse grained, br dense	own, loose to	161	_ 25—		X		2-2-4 N=6	15			
				-	-							
Stratification lines are approximate. In-situ, the transition may be gradual.						Ha	mmer	Type: Automatic			I	
Advancement Method: See Exploration and Testing Prodescription of field and laboration used and additional data (If any). Abandonment Method: See Supporting Information for esymbols and abbreviations.					res	Not	es:					
	WATER LEVEL OBSERVATIONS					Borin	ig Star	ted: 05-01-2018	Borin	g Comp	oleted: 05-01-2	2018
	Water level not determined				Drill Rig: CME 850X No. 884 Driller: DB							
		9 I 30 it, AR			Proje	ct No.	: 35185047					

			BORING L	OG N	NO .	B -{	5				F	Page 2 of	3
Р	ROJEC	: Bayou Derriseaux Structure Approaches	es and	CLIE	NT: M L	licha ittle	ael I Ro	Bake ck, A	r Internation rkansas	al, In			
S	ITE:	Highway 212 Staves, Arkansas											
GRAPHIC LOG	Latitude:	ON See Exploration Plan 34.0463° Longitude: -92.2307° 1814424.815 Easting: 1242433.715	Surface Elev.: 184.3	3560 (Ft.) ГІОN (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS	PERCENT FINES
		AYEY SAND (SC), fine to coarse grain se (continued)		TION (FL.)	-	-	X	Ω.	7-8-33 N=41	17			16
LATE.GDT 8/15/18	33.5 SA	NDY LEAN CLAY (CL), with sand sea	ms, gray, hard	151	30- - - - 35-	-			12-18-33 N=51	33			
TERRACON_DATATEMP	38.5 FA	<u>F CLAY (CH)</u> , trace sand, gray and bro	own, very stiff	146	-	-			6-7-8 N=15	35			
U DERRISEAUX .GPJ 1					40 - -	-							
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX. GPJ TERRACON_DATATEMPLATE.GDT 8/15/18					45- - -	-			5-8-9 N=17	38		96-28-68	94
EPORT. GEO SMART LOG-	53.5			131	50- - -	-	X		6-7-11 N=18	38			
D FROM ORIGINAL R	FA	<mark>Г СLAY (СН)</mark> , gray, very stiff to stiff			- 55 -	-			6-8-10 N=18	29			
PARATE	Stratific	ation lines are approximate. In-situ, the transition	on may be gradual.		1	1	Ha	ammer	Type: Automatic	1	1	1	L
OG IS NOT VALID IF SE	0 to 80 feet: ndonment M	olid-stem auger Nash boring	See Exploration and Te description of field and used and additional dat See Supporting Informa symbols and abbreviatio	laboratory a (If any). ation for exp	procedu	res	No	tes:					
		ER LEVEL OBSERVATIONS	- 1lerr					-	ted: 05-01-2018	Borii	ng Com	pleted: 05-01-	2018
THIS BOF		Water level not determined		CJL 09 I 30 nt, AR	UI				ME 850X No. 884	Drill	er: DB		

	BORING LOG NO. B-5 Page 3 of 3										
PR	OJECT: Bayou Derriseaux Structures and Approaches	CLIEN	NT: N	licha	ael I	Bake	er Internationa Arkansas	al, Ind		0	
SIT			-	ittic		un, <i>r</i>					
GRAPHIC LOG		.: 184.3560 (Ft.) LEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
	FAT CLAY (CH), gray, very stiff to stiff (continued)	LEVATION (FL)				~					
			- 60-	-			6-8-9 N=17	29		82-22-60	87
			-	-							
			- 65-	-			6-6-8 N=14	25			
	68.5 SANDY LEAN CLAY (CL), gray, hard to very stiff										
				-			35-22-24 N=46	31		43-13-30	60
			70 - -	-							
			- 75-	-			6-8-12 N=20	25			
			-								
	80.0	104.5	- 80-				5-7-10 N=17	27			
Boring Terminated at 80 Feet											
Stratification lines are approximate. In-situ, the transition may be gradual.				1	Ha	ammer	Type: Automatic	L	1		
0 to	Advancement Method: 0 to 10 feet: Solid-stem auger 10 to 80 feet: Wash boring See Exploration and Testing Pro- description of field and laborator used and additional data (If any). See Supporting Information for the second seco				No	tes:					
	andonment Method: See Supporting Information for e symbols and abbreviations. Boring backfilled with Auger Cuttings See Supporting Information for e symbols and abbreviations.			1 OT							
	WATER LEVEL OBSERVATIONS Water level not determined				Bori	ng Sta	rted: 05-01-2018	Borir	ng Com	pleted: 05-01-2	2018
			Uľ		Drill	Rig: C	ME 850X No. 884	Drille	er: DB		
		25809 I 30 Bryant, AR			Proj	ect No	.: 35185047				

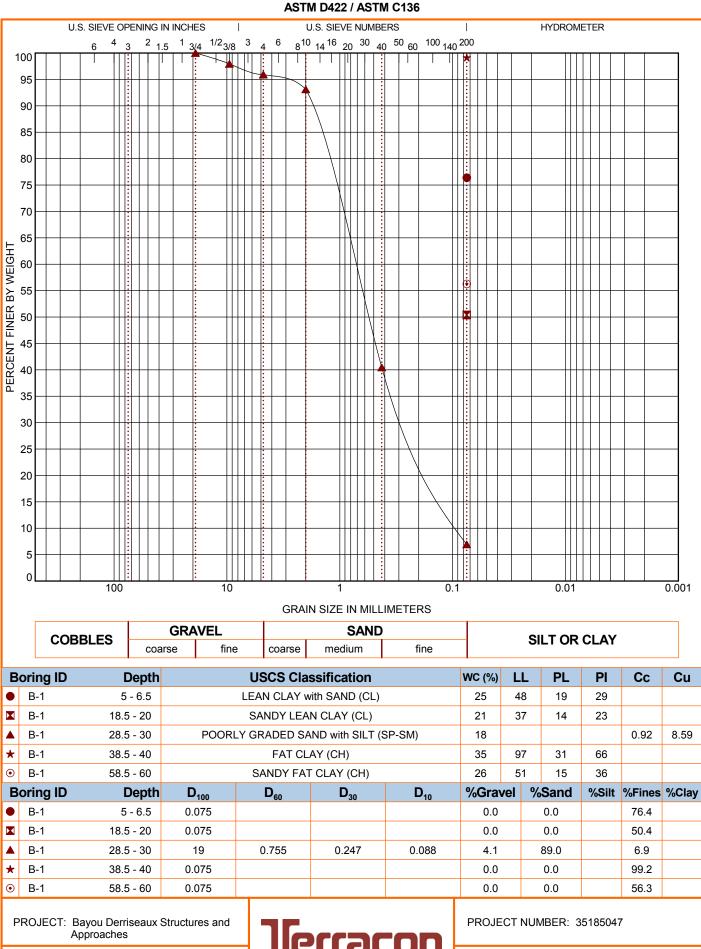
	BORING LOG NO. R-3 Page 1 of 1											
PR	OJECT: Bayou Derriseaux Structures and Approaches	CLIEN	NT: N L	licha .ittle	ael I Ro	Bake ck, A	er Internationa Arkansas	ıl, Inc		-		
SIT	E: Highway 212 Staves, Arkansas											
GRAF	LOCATION See Exploration Plan Latitude: 34.046° Longitude: -92.2319° Northing: 1814345.909 Easting: 1242084.187 Surface Elev.: 18 DEPTH ELEV	35.2890 (Ft.) /ATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES	
	D.3 \ASPHALTIC CEMENT CONCRETE - 3.5 inches FILL - SANDY LEAN CLAY (CL), trace gravel, gray brown		_				13-10-8					
	2.0	183.5	_	_			N=18	15				
	SANDY LEAN CLAY (CL), with sand seams, trace gravel, gray and brown, medium stiff to soft		-		X		4-3-3 N=6	13				
			- 5 -				4-3-3 N=6	8		31-16-15	59	
			_	-	X		2-1-2 N=3	21				
			-	-								
	10.0 Boring Terminated at 10 Feet	175.5	- 10-		\square		1-1-1 N=2	27				
	Stratification lines are approximate. In-situ, the transition may be gradual.						Type: Automatic					
Advan	rement Method				No	tes:						
0 to Abande	rancement Method: See Exploration and description of field used and addition. to 10 feet: Solid-stem auger description of field used and addition. undonment Method: see Supporting In symbols and abbre symbols and abbre symbols.											
	WATER LEVEL OBSERVATIONS				Bori	ng Sta	ted: 05-01-2018	Borir	ng Com	pleted: 05-01-2	2018	
	No free water observed				Drill	Rig: C	ME 850X No. 884	Drille	er: DB	DB		
		5809 I 30 yant, AR			Proj	ect No	: 35185047					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX. GPJ TERRACON_DATATEMPLATE.GDT 8/15/18

Page 1 of 1

PR	OJECT: Bayou Derriseaux Structures a Approaches	Ind CLIE	NT: M Li	licha ittle	ael I Ro	Bake ck, A	er Internationa Arkansas	l, Inc).		
SIT											
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.0465° Longitude: -92.2303° DEPTH	ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-Pi	PERCENT FINES
	0.3 <u>ASPHALTIC CEMENT CONCRETE - 3.5 incher FILL - SANDY LEAN CLAY (CL)</u> , with gravel.	<u>es</u> /	_	-	\bigtriangledown		12-6-3	10			
	2.0 reddish-brown LEAN CLAY WITH SAND (CL), with sand sea brown, medium stiff	ms, gray and			$\left \right\rangle$		N=9 3-3-5 N=8	15		29-16-13	73
			-	-	$\left \right\rangle$		3-2-2 N=4	14			
			5-	-	$\left \right\rangle$		2-2-2 N=4	15			
	8.5		-								
	<u>CLAYEY SAND (SC)</u> , fine grained, brown, ver 10.0 Boring Terminated at 10 Feet	y loose	- - - 10-				0-0-0 N=0	22			
	Stratification lines are approximate. In-situ, the transition ma	See Exploration and Testing Proc description of field and laboratory	edures fo	ora		tes:	Type: Automatic				
Abande	10 feet: Solid-stem auger onment Method: ng backfilled with Auger Cuttings	description of field and laboratory used and additional data (If any). See Supporting Information for ex symbols and abbreviations.									
	WATER LEVEL OBSERVATIONS	76			Bori	ng Sta	rted: 05-01-2018	Borin	a Com	oleted: 05-01-2	2018
\Box	During Drilling by dry auger	Jerrac			Boring Started: 05-01-2018 Boring Completed: 05-01-201 Drill Rig: CME 850X No. 884 Driller: DB						
		25809 I 30 Bryant, AR				-	: 35185047	21110	00		

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX . GPJ TERRACON_DATATEMPLATE. GDT 8/15/18

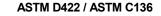

	BORING	ING LOG NO. S-3 Page 1 o							Page 1 of 2	1	
PR	OJECT: Bayou Derriseaux Structures and Approaches	CLIEN	NT: N L	licha ittle	ael I Ro	Bake ck, A	er Internationa Arkansas	l, Inc) .		
SIT	E: Highway 212 Staves, Arkansas										
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.0461° Longitude: -92.2317° Northing: 1814382.746 Easting: 1242141.382 Surface Elev.: 18 DEPTH ELEV	4.8220 (Ft.) ATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pď)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	FILL - SANDY LEAN CLAY (CL), with gravel, reddish-brown and grayish brown	183	-	_	X		6-4-2 N=6	16			
	SANDY LEAN CLAY (CL), trace gravel, brown and gray, medium stiff to soft	100	-	-			2-2-3 N=5	18			
			- 5 -		\mathbb{X}		2-3-5 N=8	15		31-17-14	55
			-	-	X		2-2-2 N=4	19			
			-	-			1-1-1				
	10.0 Boring Terminated at 10 Feet	175	10-		\mid		N=2	22			
	Stratification lines are approximate. In-situ, the transition may be gradual.					ammee	Type: Automatic				
	vancement Method: See Exploration and		edures fo	or a	No	tes:					
Aband	b 10 feet: Solid-stem auger description of field ar used and additional c See Supporting Infor symbols and abbrevi fing backfilled with Auger Cuttings										
	WATER LEVEL OBSERVATIONS No free water observed				Bori	ng Sta	rted: 05-01-2018	Borin	ng Com	pleted: 05-01-2	2018
	25	5809 I 30	UI		<u> </u>		ME 850X No. 884	Drille	er: DB		
		yant, AR			Proj	ect No	.: 35185047				

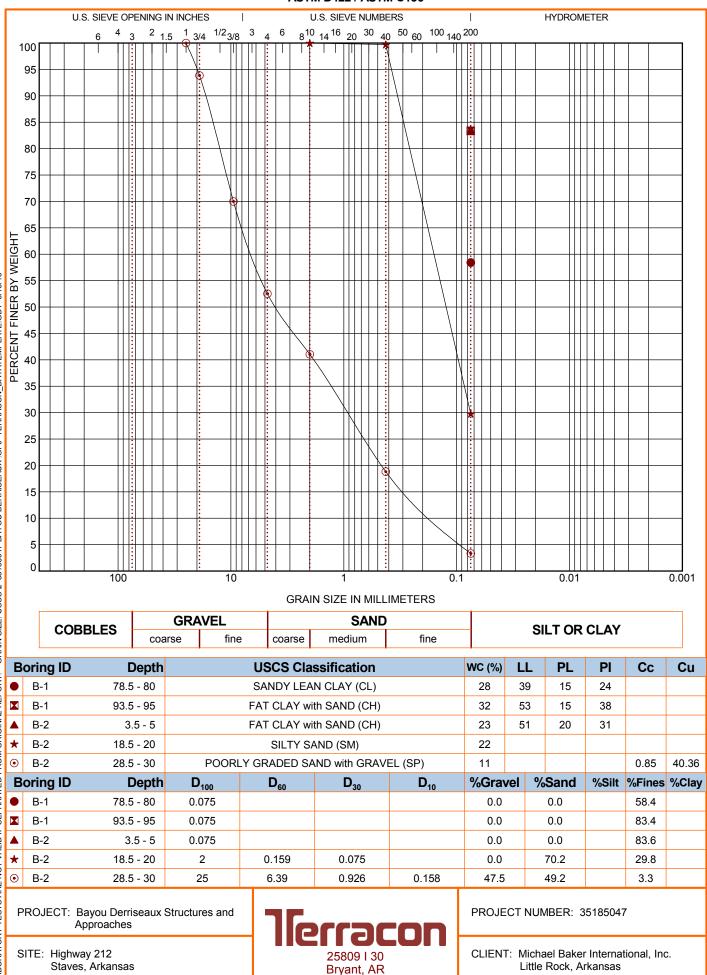
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX. GPJ TERRACON_DATATEMPLATE.GDT 8/15/18

	BORING LOG NO. S-4 Page 1 of 1											
PR	OJECT: Bayou Derriseaux Structures and Approaches		CLIEN	IT: M	licha ittle	iel E Roc	Bake	er Internationa Arkansas	l, Inc).		
SIT				_			, -					
GRAPHIC LOG	DEPTH	Irface Elev.: 185.3 ELEVAT	3010 (Ft.) FION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Inches)	FIELD TEST RESULTS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
	FILL - SANDY LEAN CLAY (CL), brown			_	-	X		3-3-3 N=6	16		40-15-25	60
				_		X		2-2-2 N=4	15			
				- 5-		X		2-1-1 N=2	12			
				-		Х		1-1-1 N=2	12			
	8.5		177	_								
	SILTY SAND (SM), fine grained, brown, loose 10.0 Boring Terminated at 10 Feet		175.5	- 10-		$ig \$		2-1-2 N=3	18			
	Stratification lines are approximate. In-situ, the transition may be gr	adual.				Ha	ımmerə	Type: Automatic				
Advancement Method: See Exploration and Tes 0 to 10 feet: Solid-stem auger description of field and la			sting Proce	dures fo	or a res	Not	tes:					
Abandonment Method: Boring backfilled with Auger Cuttings												
\bigtriangledown	WATER LEVEL OBSERVATIONS					Borir	ng Star	ted: 05-01-2018	Borin	ng Com	oleted: 05-01-2	2018
<u> </u>	During Drilling by dry auger		9 30			Drill	Rig: C	ME 850X No. 884	Drille	er: DB		
			nt, AR			Proje	ect No.	: 35185047				

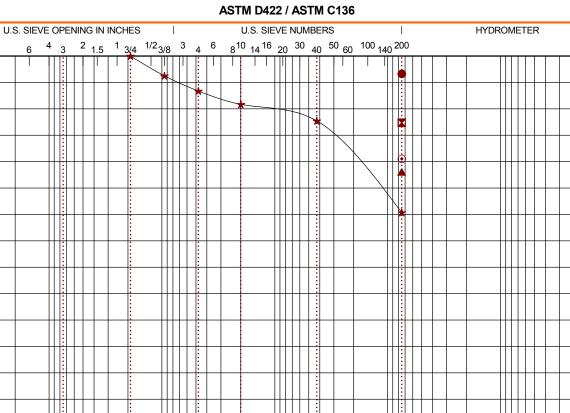
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 35185047 BAYOU DERRISEAUX. GPJ TERRACON_DATATEMPLATE.GDT 8/15/18

٢

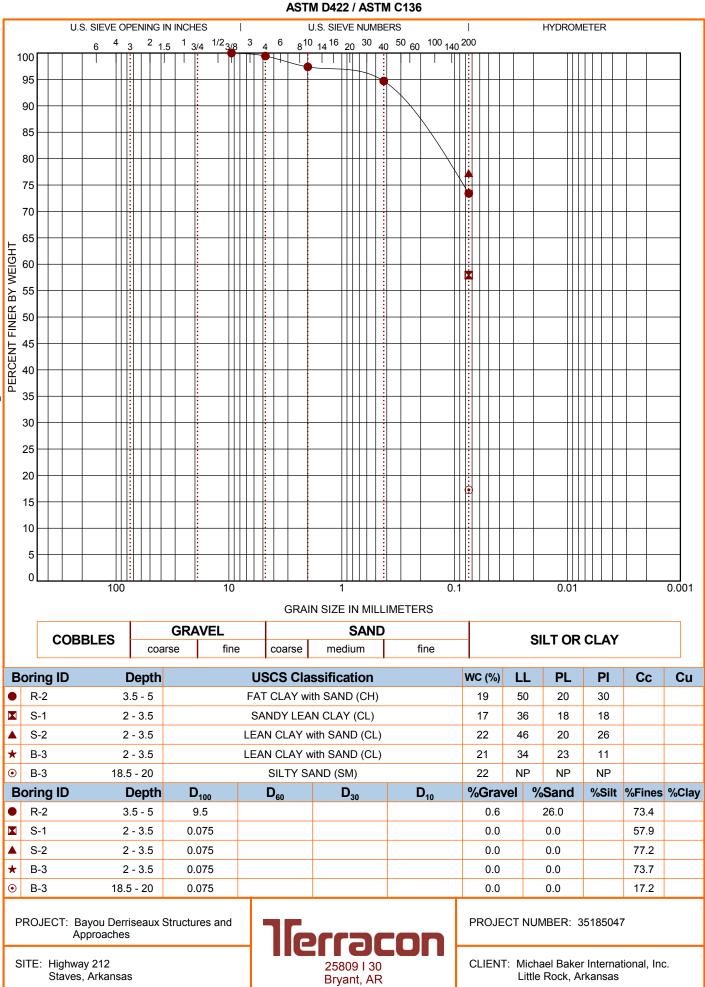

25809 | 30


Bryant, AR

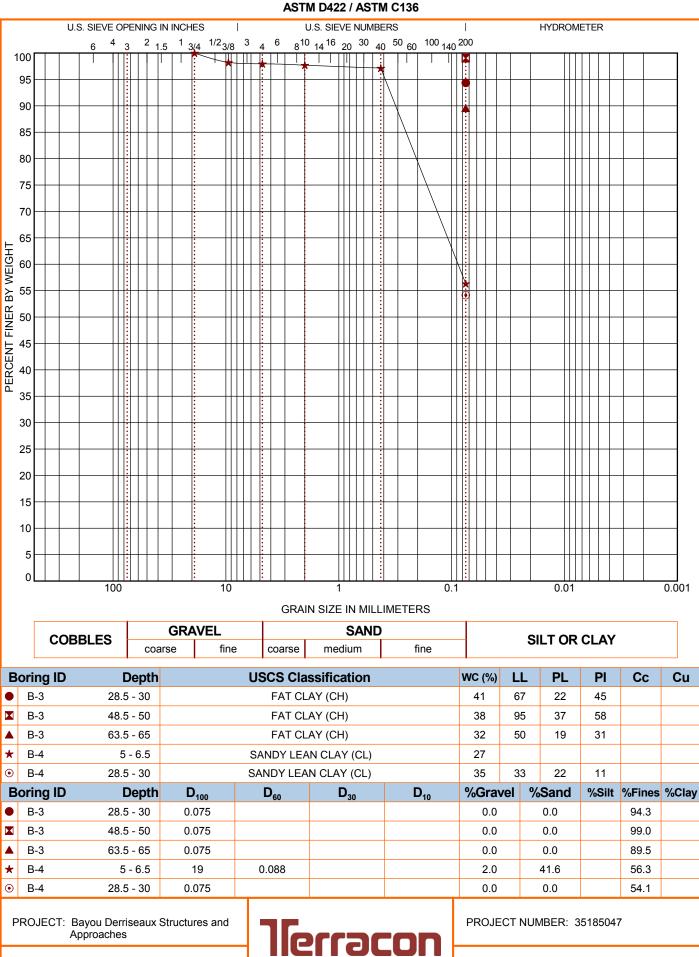
GRAIN SIZE: USCS-2 35185047 BAYOU DERRISEAUX.GPJ TERRACON_DATATEMPLATE.GDT 8/15/18 LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.


SITE: Highway 212

Staves, Arkansas



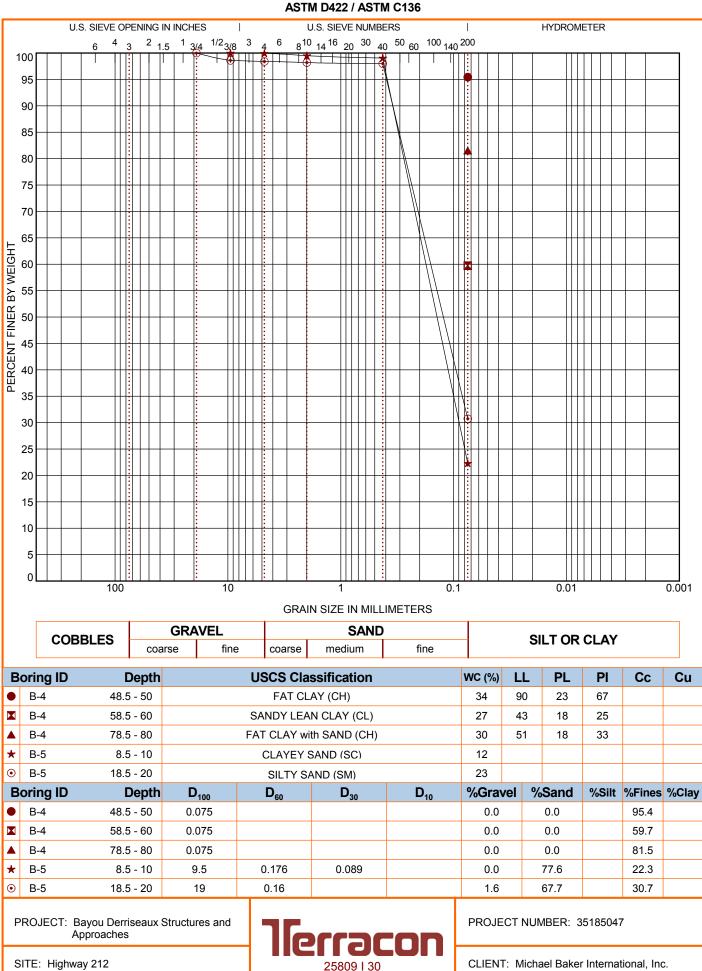
GRAIN SIZE: USCS-2 35185047 BAYOU DERRISEAUX.GPJ TERRACON_DATATEMPLATE.GDT 8/15/18 LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.



PERCENT FINER BY WEIGHT LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GRAIN SIZE: USCS-2 35185047 BAYOU DERRISEAUX GPJ TERRACON_DATATEMPLATE.GDT 8/15/18

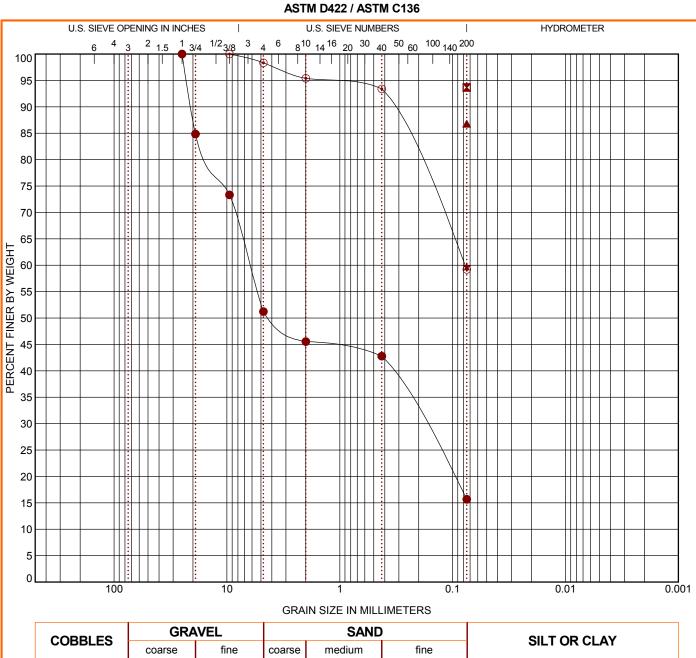
	30 - 225 - 220 - 115 - 110 - 5 - 0																										
			100				10		G	RAI	N SIZ	1 E IN	I MI	ILLIM	ETER	0. S	1				0.0	01				0.00	1
	Γ				GR	AVEL						S	AN	ID						-							
		COB	BLES	соа	arse	-	ine		coar	se	me	ediur			fi	ne				S	ILT C	R	CLA	(
В	orir	ng ID	[Depth				US	CS	Cla	ssific	cati	on	1			W	C (%)	LL	PL	_	PI		Сс	Cu	
•	B-	-		5 - 45					FAT CLAY (CH)				_	42	-	101	28		73								
	B-	2	58.5	5 - 60					FAT CLAY (CH)					32		70	22	2	48								
	B-	2	73.5	5 - 75				FAT	CLAY with SAND (CH)					27		54	17	,	37								
*	R-	·1	2	- 3.5			L	EAN	I CL/	AY v	/ith S/	٩ND	(Cl	L)				8		40	19)	21				
•	R-	·1	5	- 6.5			L	EAN	EAN CLAY with SAND (CL)					24		47	19)	28								
В	orir	ng ID	[Depth	0	D ₁₀₀		[) 60			D ₃₀)		D	10	%	Gra	avel	%	San	d	%Sil	t %	%Fines	%Cla	ay
•	B-	2	43.5	5 - 45	0	.075												0.0	C		0.0				96.6		
	B-	2	58.5	5 - 60	0	.075												0.0	0		0.0				87.4		
	B-	2	73.5	5 - 75	0	.075												0.0	C		0.0				78.0		
*	R-1 2 - 3.5 19															6.6 23.0					70.4						
● R-1 5 - 6.5 0.075														0.0	C		0.0				80.5						
PROJECT: Bayou Derriseaux Structures and Approaches PROJECT: Uichard Delay Structures and Approaches PROJECT: Bayou Derriseaux Structures and Approaches PROJECT: Bayou Derris																											
S	SITE: Highway 212 Staves, Arkansas							25809 I 30 Bryant, AR					CLIENT: Michael Baker International, Inc. Little Rock, Arkansas														

GRAIN SIZE: USCS-2 35185047 BAYOU DERRISEAUX.GPJ TERRACON_DATATEMPLATE.GDT 8/15/18 LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.



25809 | 30

Bryant, AR


GRAIN SIZE: USCS-2 35185047 BAYOU DERRISEAUX.GPJ TERRACON_DATATEMPLATE.GDT 8/15/18 LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

SITE: Highway 212 Staves, Arkansas

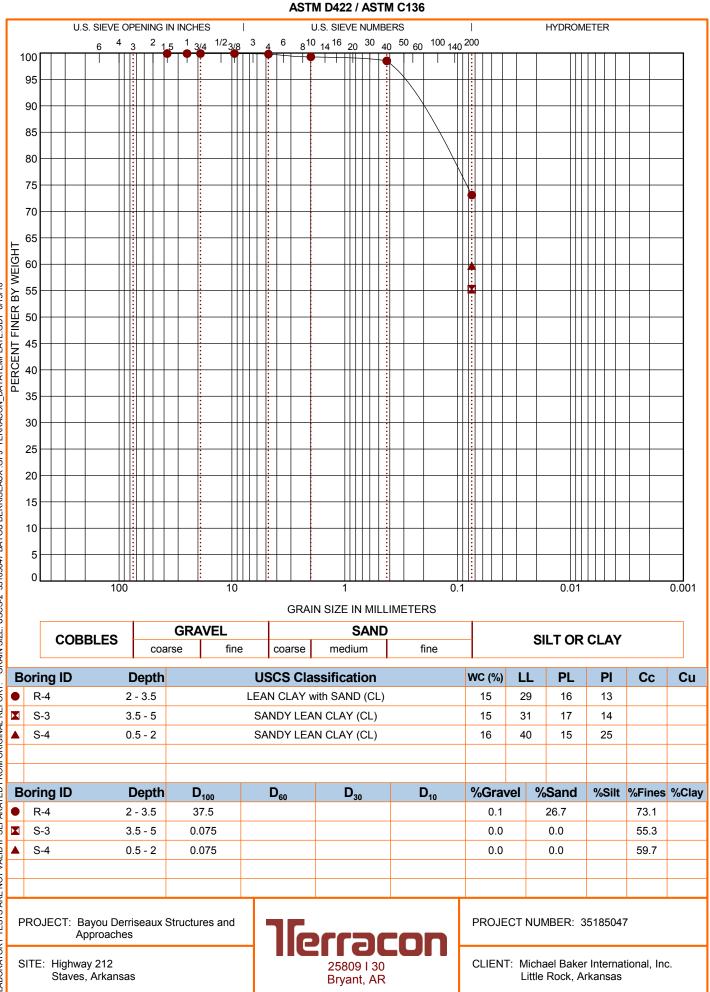
Bryant, AR

SITE: Highway 212 Staves, Arkansas

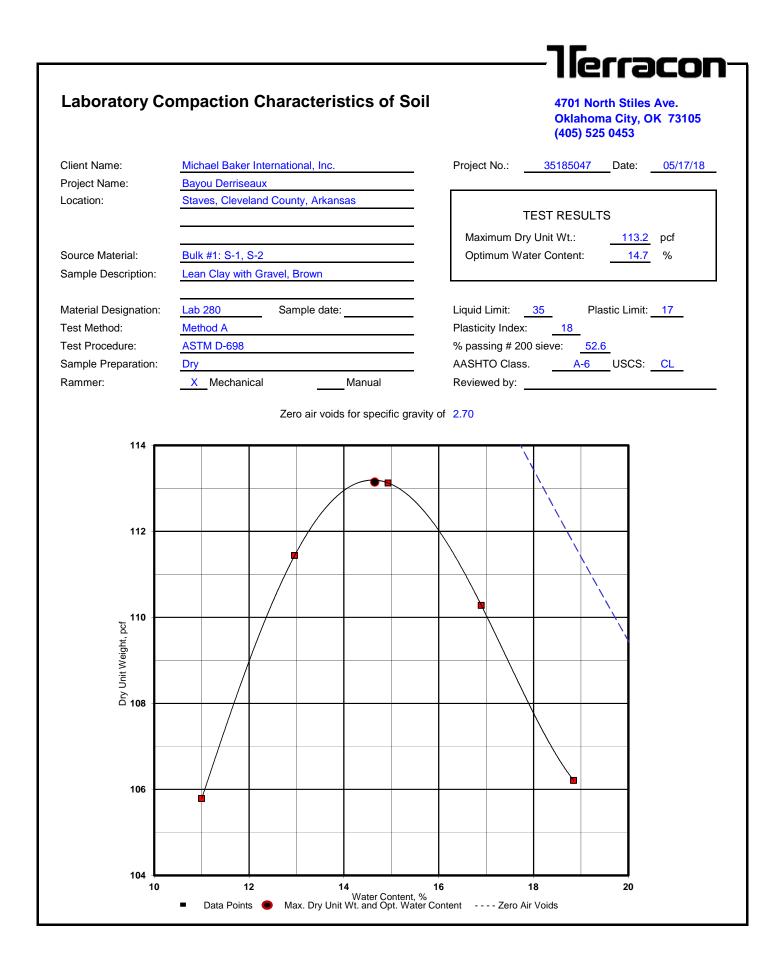
I													
	B	oring ID	Depth		USCS Cla	ssification		WC (%)	LL	PL	PI	Сс	Cu
	\bullet	B-5	28.5 - 30		CLAYEY S		17						
ſ		B-5	43.5 - 45		FAT CL		38	96	28	68			
		B-5	58.5 - 60		FAT CL		29	82	22	60			
	*	B-5	68.5 - 70		SANDY LEAN CLAY (CL)				43	13	30		
	\odot	R-3	3.5 - 5		SANDY LEAN CLAY (CL)			8	31	16	15		
	B	oring ID	Depth	D ₁₀₀	D ₆₀	D ₃₀	D ₁₀	%Grav	/el %	6Sand	-	%Fines	%Clay
	B	oring ID B-5	Depth 28.5 - 30	D₁₀₀ 25	D₆₀ 6.255	· · ·	D ₁₀	%Gra 48.8		6Sand 35.6	-	%Fines 15.7	%Clay
	B • X	<u> </u>				D ₃₀	D ₁₀	-			-		%Clay
	•	B-5	28.5 - 30	25		D ₃₀	D ₁₀	48.8		35.6	-	15.7	%Clay
	•	B-5 B-5	28.5 - 30 43.5 - 45	25 0.075		D ₃₀	D ₁₀	48.8 0.0		35.6 0.0	-	15.7 93.7	%Clay
		B-5 B-5 B-5	28.5 - 30 43.5 - 45 58.5 - 60	25 0.075 0.075		D ₃₀	D ₁₀	48.8 0.0 0.0		35.6 0.0 0.0	-	15.7 93.7 86.8	%Clay

25809 I 30

Bryant, AR


PROJECT: Bayou Derriseaux Structures and Approaches

SITE: Highway 212


Staves, Arkansas

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GRAIN SIZE: USCS-2: 35185047 BAYOU DERRISEAUX. GPJ. TERRACON. DATATEMPLATE.GDT: 8/15/18

PROJECT NUMBER: 35185047

GRAIN SIZE: USCS-2 35185047 BAYOU DERRISEAUX.GPJ TERRACON_DATATEMPLATE.GDT 8/15/18 LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

][erracon—

Resilient Modulus Testing - AASHTO T 307-99 English Units

Soil Map Unit: Soil Symbol: Depth (in.) Compaction Method Max. Dry Density (pcf) Opt. Moisture Content (%) Inside Mold Diameter (in)

Bulk 1: S1, S2 OMC	
A-6 / CL	Weight of Wet Soil (lb)
0	Initial Sample Diameter (in)
Static	Initial Sample Height (in)
113.2	Initial Sample Area (in ²)
14.7	Sample Volume (in ³)
3.94	Compacted Moisture Content(%
	Wet Density (pcf)
	Dry Density (pcf)

	6.85
	3.94
	7.87
	12.17
	95.86
(%)	15.0
	123.5
	107.4

Report Date:	07-Aug-18	_					
Lab No.:	35185047 Lab 280	RM 15 omc					
Project No.:	35185047	_					
Test Date:	May 21, 2018	_					
Final Sample	Final Sample Height (in)						
Final Sample	Final Sample Wet Weight (lb)						
Final Moisture	e Content (%)	14.9					
Accumulated	Strain (%)	0.06					
Percent Pass	ing No. 10	79					
Percent Pass	Percent Passing No. 200						
Liquid Limit	Liquid Limit						
Plasticity Inde	Plasticity Index						

	Nominal		Actual	Actual	Actual	Actual	Actual		Recov.	Average		
Chamber	Maximum		Applied	Applied	Applied	Applied	Applied	Recov. Def.	Def. LVDT			
Confining	Axial	Applied Max.	Cyclic	Contact	Max. Axial	-	Contact	LVDT #1	#2	Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	$(S_{contact})$	(H₁)	(H ₂)	(H _{avg})	(E _r)	(M _r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	18.8	12.2	6.6	1.54	1.00	0.546	0.0004	0.0004	0.0004	0.000053	18,746
6.00	4.00	42.7	33.8	8.9	3.51	2.78	0.730	0.0012	0.0013	0.0013	0.000162	17,151
6.00	6.00	67.5	55.9	11.6	5.55	4.59	0.954	0.0023	0.0024	0.0023	0.000295	15,561
6.00	8.00	92.1	78.1	14.0	7.57	6.42	1.150	0.0035	0.0036	0.0036	0.000454	14,133
6.00	10.00	116.4	100.3	16.1	9.56	8.24	1.325	0.0050	0.0051	0.0050	0.000638	12,902
4.01	2.00	20.7	13.1	7.6	1.70	1.08	0.622	0.0004	0.0005	0.0005	0.000061	17,791
4.01	4.00	45.1	35.5	9.6	3.71	2.92	0.789	0.0013	0.0015	0.0014	0.000178	16,348
4.01	6.00	69.5	57.5	12.0	5.71	4.72	0.988	0.0024	0.0026	0.0025	0.000318	14,862
4.01	8.00	93.9	79.5	14.4	7.71	6.53	1.180	0.0037	0.0039	0.0038	0.000486	13,439
4.01	10.00	118.0	101.3	16.7	9.69	8.32	1.368	0.0053	0.0054	0.0054	0.000680	12,243
2.00	2.00	21.3	15.0	6.3	1.75	1.23	0.514	0.0006	0.0007	0.0006	0.000078	15,733
2.00	4.00	45.6	37.0	8.5	3.74	3.04	0.701	0.0015	0.0018	0.0017	0.000210	14,460
2.00	6.00	69.8	58.9	10.9	5.73	4.84	0.895	0.0028	0.0030	0.0029	0.000367	13,189
2.00	8.00	93.9	80.6	13.2	7.71	6.62	1.088	0.0043	0.0045	0.0044	0.000553	11,973
2.00	10.00	118.1	102.7	15.4	9.70	8.44	1.264	0.0059	0.0061	0.0060	0.000763	11,052

lerracon-

Resilient Modulus Testing - AASHTO T 307-99 English Units

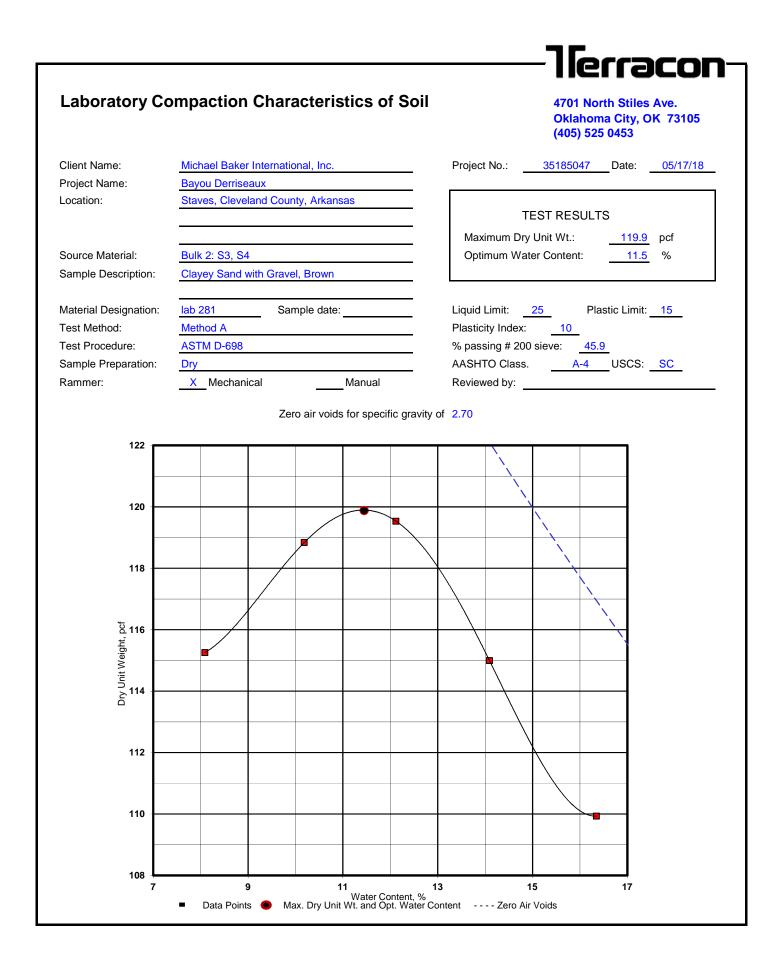
0

Static

113.2

14.7

3.94


Soil Map Unit: Bulk 1: S1, S2_OMC+2% Soil Symbol: A-6 / CL Depth (in.) Compaction Method Max. Dry Density (pcf) Opt. Moisture Content (%) Inside Mold Diameter (in)

10+2 /0	
_	Weight of Wet Soil (lb)
	Initial Sample Diameter (in)
	Initial Sample Height (in)
	Initial Sample Area (in ²)
	Sample Volume (in ³)
	Compacted Moisture Content(%)
_	Wet Density (pcf)
	Dry Density (pcf)

6.97	
3.94	
7.87	
12.17	
95.86	
16.7	
125.6	
107.6	

Report Date:	07-Aug-18	_
Lab No.:	35185047 Lab 280	RM 15 omc+2
Project No.:	35185047	
Test Date:	May 21, 2018	_
Final Sample	Height (in)	7.9
Final Sample	Wet Weight (lb)	6.97
Final Moisture	e Content (%)	16.2
Accumulated	Strain (%)	0.21
Percent Pass	ing No. 10	79
Percent Pass	52.6	
Liquid Limit		35
Plasticity Inde	18	

Chamber	Nominal Maximum	Actual	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Recov. Def.	Recov. Def. LVDT	Average Recov.		
Confining	Axial	Applied Max.	Cyclic	Contact	Max. Axial		Contact	LVDT #1	#2	Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	(S _{contact})	(H ₁)	(H ₂)	(H _{avg})	(E _r)	(M _r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	23.4	20.9	2.5	1.92	1.71	0.205	0.0011	0.0009	0.0010	0.000125	13,713
6.00	4.00	46.8	42.0	4.9	3.84	3.45	0.399	0.0023	0.0021	0.0022	0.000284	12,137
6.00	6.00	71.3	63.9	7.4	5.86	5.25	0.609	0.0043	0.0040	0.0041	0.000524	10,029
6.00	8.00	96.0	85.9	10.1	7.89	7.06	0.829	0.0067	0.0063	0.0065	0.000825	8,550
6.00	10.00	120.5	107.9	12.6	9.90	8.86	1.036	0.0091	0.0087	0.0089	0.001131	7,836
4.00	2.00	24.7	21.4	3.3	2.03	1.75	0.275	0.0012	0.0010	0.0011	0.000144	12,167
4.01	4.00	48.8	43.0	5.8	4.01	3.53	0.478	0.0028	0.0025	0.0026	0.000336	10,514
4.00	6.00	73.1	64.7	8.4	6.00	5.31	0.692	0.0049	0.0046	0.0047	0.000601	8,835
4.00	8.00	97.4	86.6	10.8	8.00	7.11	0.885	0.0075	0.0071	0.0073	0.000924	7,693
4.01	10.00	121.4	108.2	13.2	9.97	8.88	1.086	0.0101	0.0097	0.0099	0.001262	7,042
2.00	2.00	24.3	21.1	3.2	2.00	1.73	0.264	0.0014	0.0012	0.0013	0.000164	10,572
2.00	4.00	48.5	42.8	5.6	3.98	3.52	0.464	0.0032	0.0030	0.0031	0.000395	8,900
2.00	6.00	72.8	64.8	8.1	5.98	5.32	0.662	0.0058	0.0055	0.0056	0.000715	7,438
2.00	8.00	97.0	86.5	10.5	7.97	7.11	0.861	0.0087	0.0083	0.0085	0.001081	6,572
2.00	10.00	121.0	108.0	13.1	9.94	8.87	1.072	0.0117	0.0112	0.0115	0.001455	6,095

lerracon

Resilient Modulus Testing - AASHTO T 307-99 English Units

Soil Map Unit:	1
Soil Symbol:	
Depth (in.)	
Compaction Method	
Max. Dry Density (pcf)	
Opt. Moisture Content (%)	
Inside Mold Diameter (in)	

Bulk 2: S3, S4 OMC	
0	Weight of Wet Soil (lb)
A-4 / SC	Initial Sample Diamete
Static	Initial Sample Height (i
119.9	Initial Sample Area (in ²
11.5	Sample Volume (in ³)
3.94	Compacted Moisture C
	Wet Density (pcf)
	Dry Density (pcf)

b)	7.04
ter (in)	3.94
(in)	7.87
n ²)	12.17
	95.86
Content(%)	11.8
	126.9
	113.5

Report Date:	07-Aug-18				
Lab No.:	35185047 Lab 281	RM 16 omc			
Project No.:	35185047				
Test Date:	May 21, 2018	_			
Final Sample	Height (in)	7.9			
Final Sample	Final Sample Wet Weight (lb)				
Final Moisture	Final Moisture Content (%)				
Accumulated	Strain (%)	0.15			
Percent Pass	ing No. 10	80			
Percent Pass	Percent Passing No. 200				
Liquid Limit		25			
Plasticity Inde	ex	10			

	Nominal		Actual	Actual	Actual	Actual	Actual		Recov.	Average		
Chamber	Maximum		Applied	Applied	Applied	Applied	Applied		Def. LVDT			
Confining	Axial	Applied Max.	Cyclic	Contact	Max. Axial	-	Contact	LVDT #1	#2	Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	$(S_{contact})$	(H₁)	(H ₂)	(H _{avg})	(E _r)	(M _r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	22.9	19.7	3.1	1.88	1.62	0.258	0.0008	0.0009	0.0008	0.000106	15,271
6.00	4.00	46.6	41.2	5.4	3.83	3.39	0.442	0.0018	0.0020	0.0019	0.000240	14,097
6.00	6.00	71.0	63.0	7.9	5.83	5.18	0.651	0.0031	0.0035	0.0033	0.000416	12,446
6.00	8.00	95.0	84.7	10.3	7.81	6.96	0.847	0.0046	0.0051	0.0049	0.000619	11,241
6.00	10.00	119.1	106.0	13.0	9.78	8.71	1.070	0.0062	0.0067	0.0065	0.000822	10,596
4.01	2.00	24.4	20.8	3.6	2.00	1.71	0.296	0.0010	0.0011	0.0011	0.000134	12,795
4.00	4.00	48.5	42.3	6.2	3.98	3.47	0.507	0.0022	0.0026	0.0024	0.000305	11,380
4.00	6.00	72.4	63.9	8.5	5.95	5.25	0.700	0.0038	0.0042	0.0040	0.000510	10,279
4.01	8.00	96.7	85.7	10.9	7.94	7.04	0.898	0.0056	0.0060	0.0058	0.000736	9,572
4.01	10.00	120.3	107.0	13.3	9.88	8.78	1.092	0.0073	0.0078	0.0075	0.000958	9,165
2.00	2.00	24.3	21.0	3.3	2.00	1.73	0.269	0.0012	0.0014	0.0013	0.000166	10,421
2.00	4.00	48.3	42.7	5.6	3.97	3.50	0.462	0.0029	0.0032	0.0031	0.000387	9,044
2.00	6.00	72.3	64.1	8.2	5.94	5.27	0.673	0.0049	0.0053	0.0051	0.000643	8,187
2.00	8.00	96.6	86.0	10.6	7.93	7.07	0.868	0.0069	0.0073	0.0071	0.000905	7,804
2.00	10.00	120.4	107.3	13.1	9.89	8.81	1.072	0.0088	0.0094	0.0091	0.001160	7,597

]lerracon—

Resilient Modulus Testing - AASHTO T 307-99 English Units

Soil Map Unit: E Soil Symbol: Depth (in.) Compaction Method Max. Dry Density (pcf) Opt. Moisture Content (%) Inside Mold Diameter (in)

Bulk	2: S3, S4 OMC	<u>+2%</u>
	A-4 / SC	Weight of Wet S
	0	Initial Sample D
	Static	Initial Sample H
	119.9	Initial Sample A
)	11.5	Sample Volume
	3.94	Compacted Mo
		Wet Density (po
		Dry Density (pc

Vet Soil (lb)	7.18
le Diameter (in)	3.94
le Height (in)	7.87
ole Area (in ²)	12.17
ume (in ³)	95.86
Moisture Content(%)	13.2
y (pcf)	129.4
(pcf)	114.3

Report Date:	07-Aug-18	_				
Lab No.:	35185047 Lab 281	RM 16 omc+2				
Project No.:	35185047	_				
Test Date:	May 21, 2018	_				
Final Sample	Height (in)	7.8				
Final Sample	Final Sample Wet Weight (lb)					
Final Moisture	Final Moisture Content (%)					
Accumulated	Strain (%)	0.34				
Percent Pass	ing No. 10	80				
Percent Pass	Percent Passing No. 200					
Liquid Limit		25				
Plasticity Inde	ex	10				

	Nominal		Actual	Actual	Actual	Actual	Actual		Recov.	Average		
Chamber	Maximum	Actual	Applied	Applied	Applied	Applied	Applied		Def. LVDT			
Confining	Axial	Applied Max.	Cyclic	Contact	Max. Axial	Cyclic	Contact	LVDT #1	#2	Def. LVDT		Resilient
Pressure	Stress	Axial Load	Load	Load	Stress	Stress	Stress	Reading	Reading	1 and 2	Resilient Strain	Modulus
(S ₃)	(S _{cyclic})	(P _{max})	(P _{cyclic})	(P _{contact})	(S _{max})	(S _{cyclic})	$(S_{contact})$	(H ₁)	(H ₂)	(H _{avg})	(E _r)	(M _r)
psi	psi	lb	lb	lb	psi	psi	psi	in	in	in	in/in	psi
6.00	2.00	23.6	21.2	2.4	1.94	1.74	0.197	0.0010	0.0011	0.0011	0.000134	12,969
6.00	4.00	47.8	43.0	4.8	3.93	3.53	0.395	0.0023	0.0025	0.0024	0.000306	11,525
6.00	6.00	71.9	64.6	7.3	5.90	5.30	0.600	0.0040	0.0044	0.0042	0.000538	9,853
6.00	8.00	95.5	85.7	9.8	7.85	7.04	0.809	0.0060	0.0064	0.0062	0.000789	8,920
6.00	10.00	119.1	107.0	12.1	9.78	8.79	0.994	0.0078	0.0083	0.0080	0.001021	8,608
4.01	2.00	24.2	20.9	3.3	1.99	1.72	0.270	0.0011	0.0014	0.0013	0.000161	10,678
4.01	4.00	48.4	42.7	5.7	3.97	3.51	0.466	0.0028	0.0032	0.0030	0.000386	9,091
4.00	6.00	72.4	64.2	8.2	5.95	5.28	0.671	0.0050	0.0054	0.0052	0.000661	7,982
4.00	8.00	96.5	86.1	10.4	7.92	7.07	0.853	0.0072	0.0076	0.0074	0.000941	7,515
4.00	10.00	120.2	107.3	12.9	9.87	8.82	1.058	0.0092	0.0098	0.0095	0.001206	7,310
2.00	2.00	23.9	20.7	3.2	1.96	1.70	0.265	0.0015	0.0017	0.0016	0.000204	8,310
2.00	4.00	47.9	42.4	5.5	3.93	3.48	0.451	0.0038	0.0042	0.0040	0.000508	6,849
2.00	6.00	71.8	64.0	7.8	5.89	5.25	0.638	0.0065	0.0070	0.0067	0.000857	6,131
2.00	8.00	95.9	85.6	10.3	7.87	7.03	0.845	0.0089	0.0094	0.0092	0.001166	6,029
2.00	10.00	119.6	106.9	12.8	9.83	8.78	1.050	0.0112	0.0118	0.0115	0.001455	6,030

SUPPORTING INFORMATION

GENERAL NOTES DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

SAMPLING	WATER LEVEL		FIELD TESTS
	Water Initially Encountered	N	Standard Penetration Test Resistance (Blows/Ft.)
Standard Penetration	_────────────────────────────────────	(HP)	Hand Penetrometer
∠]⊤est	Water Level After a Specified Period of Time	(T)	Torvane
	Water levels indicated on the soil boring logs are the levels measured in the borehole at the times	(DCP)	Dynamic Cone Penetrometer
	indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible	UC	Unconfined Compressive Strength
	with short term water level observations.	(PID)	Photo-Ionization Detector
		(OVA)	Organic Vapor Analyzer

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no ctual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	STRENGTH TERMS										
RELATIVE DENSITY	OF COARSE-GRAINED SOILS		CONSISTENCY OF FINE-GRAINED SOILS								
	retained on No. 200 sieve.) / Standard Penetration Resistance	Consistency d	(50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manu procedures or standard penetration resistance								
Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency) Unconfined Compressive Strength Qu, (psf) Standard Pen N-Val Blows									
Very Loose	0 - 3	Very Soft	0 - 1								
Loose	4 - 9	Soft	500 to 1,000	2 - 4							
Medium Dense	10 - 29	Medium Stiff	1,000 to 2,000	4 - 8							
Dense	30 - 50	Stiff	8 - 15								
Very Dense	> 50	Very Stiff	15 - 30								
		Hard	> 8,000	> 30							

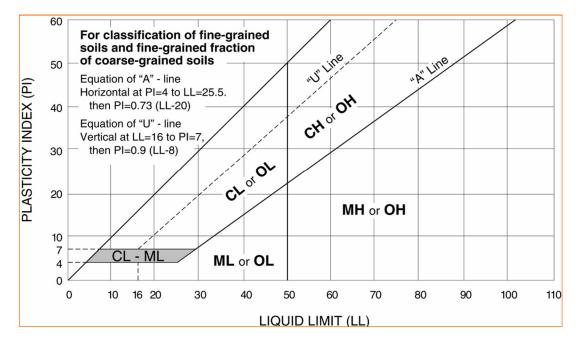
RELATIVE PROPORTION	S OF SAND AND GRAVEL	RELATIVE PROPORTIONS OF FINES			
Descriptive Term(s) of other constituents			Percent of Dry Weight		
Trace	<15	Trace	<5		
With	15-29	With	5-12		
Modifier	>30	Modifier	>12		
GRAIN SIZE T	ERMINOLOGY	PLASTICITY DESCRIPTION			
Major Component of Sample	Particle Size	Term	Plasticity Index		
Boulders	Over 12 in. (300 mm)	Non-plastic	0		
Cobbles	12 in. to 3 in. (300mm to 75mm)	Low	1 - 10		
Gravel	3 in. to #4 sieve (75mm to 4.75 mm)	Medium	11 - 30		
Sand	#4 to #200 sieve (4.75mm to 0.075mm	High	> 30		
Silt or Clay	Passing #200 sieve (0.075mm)				

UNIFIED SOIL CLASSIFICATION SYSTEM

Job No. 070415 Staves, Cleveland County, Arkansas August 20, 2018 Terracon Project No. 35185047

llerracon GeoReport

					S	Soil Classification
Criteria for Assigni	ing Group Symbols	and Group Name	s Using Laboratory	Tests ^A	Group Symbol	Group Name ^B
	Gravels:	Clean Gravels:	Cu ³ 4 and 1 £ Cc £ 3 ^E		GW	Well-graded gravel ^F
	More than 50% of	Less than 5% fines ^c	Cu < 4 and/or 1 > Cc > 3	E	GP	Poorly graded gravel ^F
	coarse fraction	Gravels with Fines:	Fines classify as ML or N	1H	GM	Silty gravel ^{F,G,H}
Coarse-Grained Soils: More than 50% retained	retained on No. 4 sieve	More than 12% fines ^c	Fines classify as CL or C	H	GC	Clayey gravel ^{F,G,H}
on No. 200 sieve	Sands:	Clean Sands:	Cu ³ 6 and 1 £ Cc £ 3 ^E		SW	Well-graded sand ^I
01110.200 3000	50% or more of coarse	Less than 5% fines ^D	Cu < 6 and/or 1 > Cc > 3	E	SP	Poorly graded sand ^I
	fraction passes No. 4	Sands with Fines:	Fines classify as ML or N	ИH	SM	Silty sand ^{G,H,I}
	sieve	More than 12% fines ^D	Fines classify as CL or C	Η	SC	Clayey sand ^{G,H,I}
		Inorganic:	PI > 7 and plots on or above "A" line		CL	Lean clay ^{K,L,M}
	Silts and Clays:	morganic.	PI < 4 or plots below "A" line ^J		ML	Silt ^{K,L,M}
	Liquid limit less than 50	Organia	Liquid limit - oven dried	< 0.75	OL	Organic clay ^{K,L,M,N}
Fine-Grained Soils:		Organic:	Liquid limit - not dried	< 0.75	UL	Organic silt K,L,M,O
50% or more passes the No. 200 sieve		Inorgania	PI plots on or above "A"	ine	СН	Fat clay ^{K,L,M}
	Silts and Clays:	Inorganic:	PI plots below "A" line		MH	Elastic Silt ^{K,L,M}
	Liquid limit 50 or more	Organia	Liquid limit - oven dried	< 0.75	ОН	Organic clay ^{K,L,M,P}
		Organic:	Liquid limit - not dried	< 0.75	ОП	Organic silt ^{K,L,M,Q}
Highly organic soils:	Primarily	organic matter, dark in c	color, and organic odor		PT	Peat


^A Based on the material passing the 3-inch (75-mm) sieve

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^E Cu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_4}$$

- ^F If soil contains ³ 15% sand, add "with sand" to group name.
- ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- ¹ If soil contains ³ 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay. ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- ^L If soil contains ³ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^M If soil contains ³ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- N PI 3 4 and plots on or above "A" line.
- $^{\rm O}$ PI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- Q PI plots below "A" line.

February 17, 2020

Michael Baker International, 1400 West Markham, Suite 204 Little Rock, Arkansas 72201

- Attn: Mr. Scott Thornsberry P: (501) 244-1004 E: <u>scott.thornsberry@mbakerintl.com</u>
- Re: WEAP Driveability Study Bayou Derriseaux Structures Highway 212 Staves, Cleveland County, Arkansas Terracon Project No. 35185047

Dear Mr. Thornsberry:

This letter provides supplemental geotechnical recommendations for the above referenced project. Geotechnical recommendations for this project were provided in Terracon Report No. 35185047.R1, dated September 28, 2018.

Terracon Consultants, Inc. (Terracon) has completed preliminary Wave Equation analyses to evaluate the suitability of a hammer and pile system for the above referenced project. For these analyses, a Delmag D 30-32 diesel hammer driving system with a rated energy of 58.3 kip-ft was assumed to drive both the 18-inch and 24-inch close ended steel pipe piles, without concrete fill, at the referenced project to depths between 65 to 90 feet on bridge structures M3994 and M3995.

The preliminary wave equation drivability analyses were performed using GRLWEAP 2010, developed by GRL Engineers and maintained and further developed by Pile Dynamics, Inc. For these analyses, we have used hammer system default input values provided by the software when using steel pipe piles along with soil input parameters consisting of shaft and toe damping values, shaft and toe quake values, the soil profile from borings B-1 to B-5, and hammer efficiency of 0.75 as summarized in Table 1 below.

Table 1. WEAP Input Table for Drivability Analyses										
WEAP Input										
Pile Types	18-inch and 24-inch steel pipe piles with ½ inch wall thickness									
Pile Length	65 to 90 feet									
Pile Penetration	65 to 90 feet									
Soil Borings Used	Borings B-1 thru B-5									
Terracon Consulta (501) 84	ants, Inc. 25809 I30 South Bryant, Arkansas 72022 47-9292 F (501) 847-9210 terracon.com									
Environmental 🧧 Faci	ilities 📮 Geotechnical 📒 Materials									

Pile Drivability Analysis 2nd Iteration

Big Creek Relief Structures Arkansas Highway 133 February 17, 2020 Terracon Project No. 35185046

WEAP Input							
Hammer Effic	ciency (Default)	0.75					
Rated En	ergy (ft-kip)	75.4					
	Area	415 in ²					
Hammer Cushion	Elastic Modulus	530 ksi					
	Thickness	2 inches (1-inch Nylon + 2 x ½-inch Aluminum)					
	C.O.R. (Equivalent)	0.8					
Pile Cushion	Elastic Modulus (assumed)	NA					
Plie Cushion	Initial Thickness (assumed)	NA					
Helmet	Total Weight (kips) (provided)	2.5 kips					
	Shaft	0.185 sec/ft					
Damping (Estimated)	Тое	0.15 sec/ft					
Queke (Estimated)	Shaft	0.1 in					
Quake (Estimated)	Тое	0.298 in					
Stroke Heigh	t (max. Rated)	11.4 ft					
Resistance G	ain/Loss Factor	0.5 (Shaft) / 1.0 (Toe) – Initial Drive Condition 1.0 (Shaft) / 1.0 (Toe) – Restrike Condition (Soil Setup)					
Soil	Profile	See Borings B-1 thru B-5					
Steel yield	strength (fy)	50 ksi					
Estimated maximum allowable pile driving stresses (Using AASHTO Specifications)		.90(50 ksi)=45 ksi (compression and tension)					

Based on the <u>preliminary</u> WEAP drivability analyses, an Delmag D30-32 hammer system appears to be capable of driving piles without achieving practical refusal. The analyses also indicate that the maximum hammer stroke height did not exceed 9.2 feet and the compressive stresses stayed below 30.4 ksi during initial drive and beginning of restrike for all WEAP runs.

Pile Drivability Analysis 2nd Iteration

Big Creek Relief Structures Arkansas Highway 133 February 17, 2020 Terracon Project No. 35185046

	Summary of Pile Lengths based on WEAP Analysis Results										
				Bent 4							
				24" Dia							
	End Bent 1	Bent 2	Bent 3	or	Bent 5	End Bent 6					
Bridge Name	18" Dia	24" Dia	24" Dia	End Bent 4	24" Dia	18" Dia					
	Length (ft)	Length (ft)	Length (ft)	18"	Length (ft)	Length (ft)					
				Diameter							
				Length (ft)							
M3994	68	88	90	68							
M3995	65	85	85	85	90	68					

Many assumptions are made in the performance of WEAP drivability analyses; therefore, the WEAP results above are preliminary. Acceptance of all pile driving equipment and procedures are subject to satisfactory field performance during test pile program. We suggest test piles be located on piles to confirm drivability and capacity using PDA testing and subsequent CAPWAP analysis.

If pile type or dimensions change and if hammer type or size change, additional analyses should be performed.

Sincerely, Terracon Consultants, Inc.

Kimberly A. Daggitt, P.E. Project Engineer

Christopher S. Handley, P.E. Department Manager

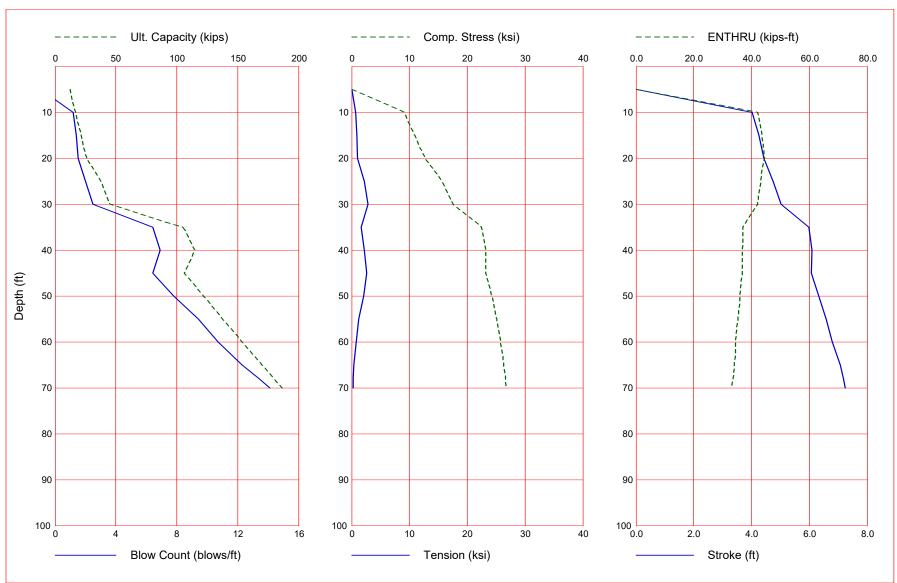
SME: Alfred H. Hartley, M.S.C.E. – Birmingham, Alabama Office

Attachment: Preliminary WEAP Analysis

Pile Drivability Analysis 2nd Iteration

Big Creek Relief Structures
Arkansas Highway 133
February 17, 2020 Terracon Project No. 35185046

WEAP Analysis Attachments


WEAP Estimated Ultimate Capacity

Bridge Name	Embedment Pile Length	Pile Diameter (in)	End of Initial Drive Capacity (kips)	7 Day Setup Capacity (kips)	Required Ultimate Capacity (kips)
M3994					
Abutment 1	68+	18	179.7	305.5	292
Bent 2	88+	24	336.4	583.2	568
Bent 3	90+	24	337.7	585.7	568
Abutment 4	68+	18	180.0	306.1	292
M3995					
Abutment 1	65+	18	230.4	300.9	280
Bent 2	85+	24	441.6	558.3	532
Bent 3	85+	24	441.6	558.3	532
Bent 4	85+	24	441.6	558.3	532
Bent 5	90+	24	399.6	564.0	532
Abutment 6	68+	18	223.3	288.7	280

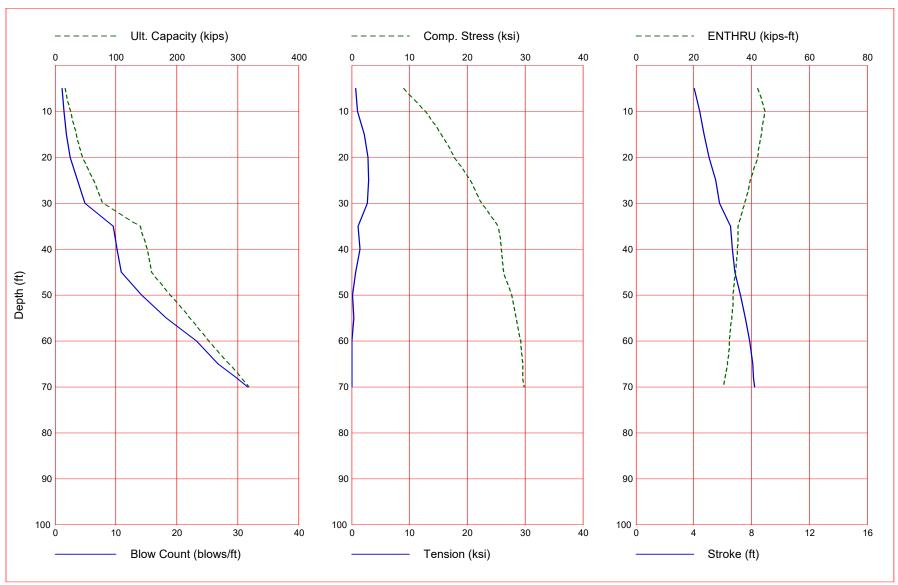
Using Delmag D30-32 Diesel Hammer Pile driven down to estimated tip Without concrete

TSVC, INC. - BIRMINGHAM 35185047 M3994 BT 1 18 in Pile EOD

May 07 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	12.3	4.4	7.9	-1.0	0.000	0.000	0.00	0.0
10.0	16.9	8.9	7.9	1.2	9.108	-0.712	4.03	42.1
15.0	21.5	13.6	7.9	1.4	10.948	-0.866	4.25	43.6
20.0	26.3	18.3	7.9	1.5	12.784	-1.047	4.42	44.4
25.0	37.6	25.7	11.9	2.0	15.678	-2.151	4.75	43.2
30.0	45.1	33.2	11.9	2.5	17.549	-2.790	5.03	42.1
35.0	105.5	41.6	64.0	6.4	22.484	-1.657	5.98	37.1
40.0	114.9	50.9	64.0	6.9	23.193	-2.177	6.09	36.7
45.0	106.1	66.3	39.8	6.4	23.167	-2.623	6.06	36.7
50.0	121.7	81.9	39.8	7.8	24.238	-2.058	6.33	35.9
55.0	137.5	97.7	39.8	9.4	25.068	-1.277	6.59	35.2
60.0	153.5	113.8	39.8	10.7	25.749	-0.825	6.80	34.5
65.0	169.8	130.1	39.8	12.3	26.331	-0.399	7.08	34.0
68.0	179.7	140.0	39.8	13.4	26.600	-0.245	7.18	33.5
70.0	186.4	146.6	39.8	14.1	26.724	-0.252	7.25	33.2


Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

Total Continuous Driving Time 8.00 minutes; Total Number of Blows

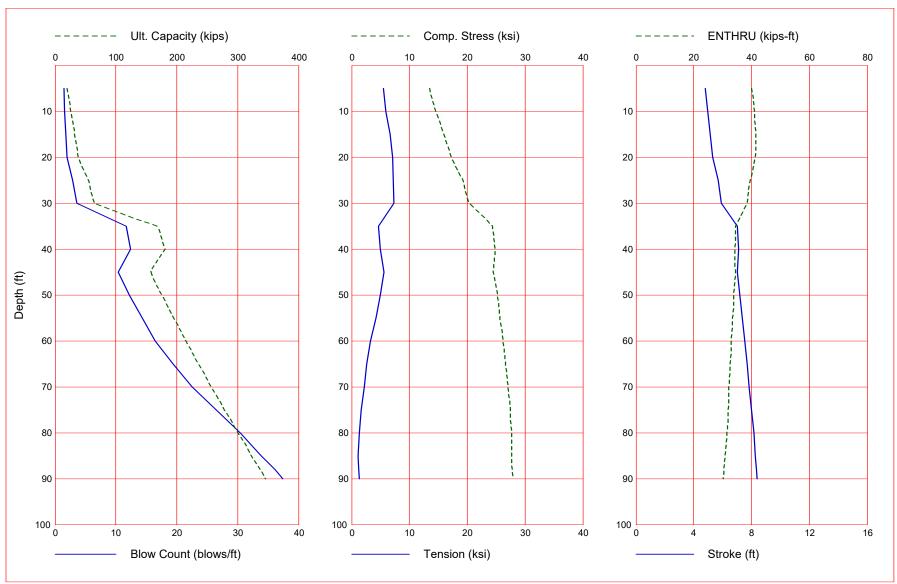
372 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3994 BT 1 18 in Pile BOR

May 07 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	16.7	8.8	7.9	1.2	9.046	-0.677	4.02	42.1
10.0	25.8	17.8	7.9	1.5	12.705	-1.015	4.42	44.6
15.0	35.1	27.1	7.9	1.9	15.502	-2.161	4.71	43.5
20.0	44.6	36.7	7.9	2.5	17.801	-2.845	5.04	42.1
25.0	63.3	51.4	11.9	3.7	20.564	-2.913	5.51	39.5
30.0	78.3	66.3	11.9	4.9	22.428	-2.702	5.78	37.7
35.0	140.4	76.4	64.0	9.6	25.293	-1.139	6.57	35.4
40.0	151.6	87.7	64.0	10.2	25.840	-1.443	6.66	35.0
45.0	158.1	118.4	39.8	10.9	26.320	-0.737	6.83	34.4
50.0	189.3	149.6	39.8	14.2	27.645	-0.114	7.23	33.6
55.0	221.0	181.2	39.8	18.3	28.405	-0.334	7.57	33.1
60.0	253.1	213.4	39.8	23.2	29.312	-0.041	7.86	32.4
65.0	285.7	245.9	39.8	26.8	29.609	0.000	8.10	31.7
68.0	305.5	265.7	39.8	29.7	29.595	0.000	8.14	30.8
70.0	318.8	279.0	39.8	31.6	29.818	0.000	8.23	30.5


Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

Total Continuous Driving Time 16.00 minutes; Total Number of Blows

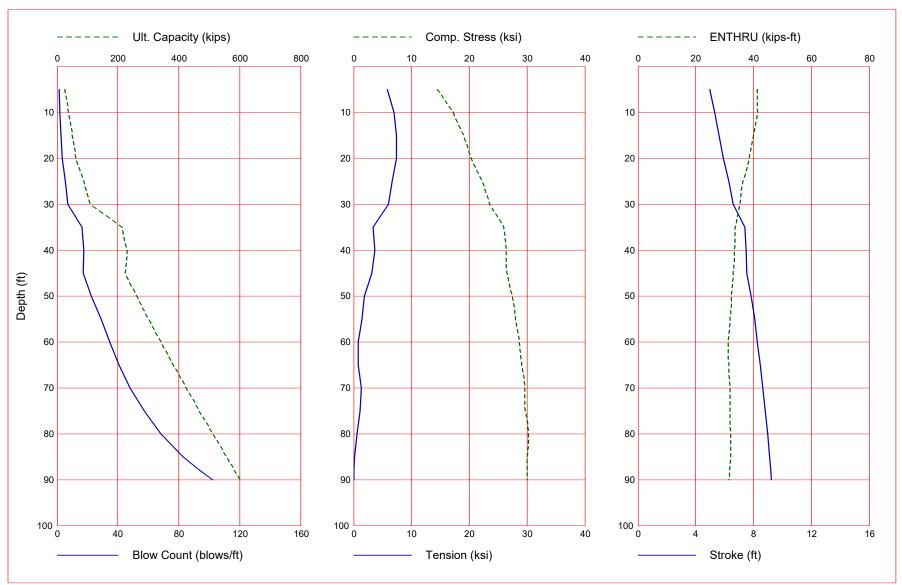
722 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3994 BT 2 24 in Pile EOD

May 08 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

TSVC, INC. - BIRMINGHAM 35185047 M3994 BT 2 24 in Pile EOD


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	20.0	5.8	14.1	1.5	13.459	-5.488	4.81	40.0
10.0	25.9	11.8	14.1	1.6	14.552	-5.908	4.97	41.1
15.0	32.0	17.9	14.1	1.8	15.995	-6.625	5.16	41.4
20.0	38.2	24.1	14.1	2.0	17.267	-7.080	5.33	41.2
25.0	54.9	33.7	21.2	2.9	19.237	-7.241	5.68	39.5
30.0	64.6	43.4	21.2	3.6	20.331	-7.356	5.89	38.4
35.0	168.3	54.6	113.7	11.7	24.379	-4.636	7.02	34.5
40.0	180.8	67.1	113.7	12.4	24.794	-4.940	7.11	34.3
45.0	156.4	85.8	70.7	10.4	24.487	-5.606	7.00	34.4
50.0	175.6	104.9	70.7	12.2	25.192	-4.998	7.18	33.9
55.0	195.2	124.5	70.7	14.3	25.704	-4.172	7.36	33.4
60.0	215.3	144.6	70.7	16.5	26.196	-3.281	7.51	32.9
65.0	235.8	165.2	70.7	19.4	26.629	-2.562	7.68	32.6
70.0	256.9	186.2	70.7	22.5	27.036	-2.154	7.84	32.1
75.0	278.4	207.7	70.7	26.5	27.428	-1.704	8.00	31.8
80.0	300.3	229.6	70.7	30.4	27.716	-1.317	8.15	31.5
85.0	322.8	252.1	70.7	33.9	27.716	-1.161	8.25	30.8
88.0	336.4	265.8	70.7	36.1	27.832	-1.246	8.34	30.4
90.0	345.7	275.0	70.7	37.4	27.864	-1.320	8.40	30.2

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

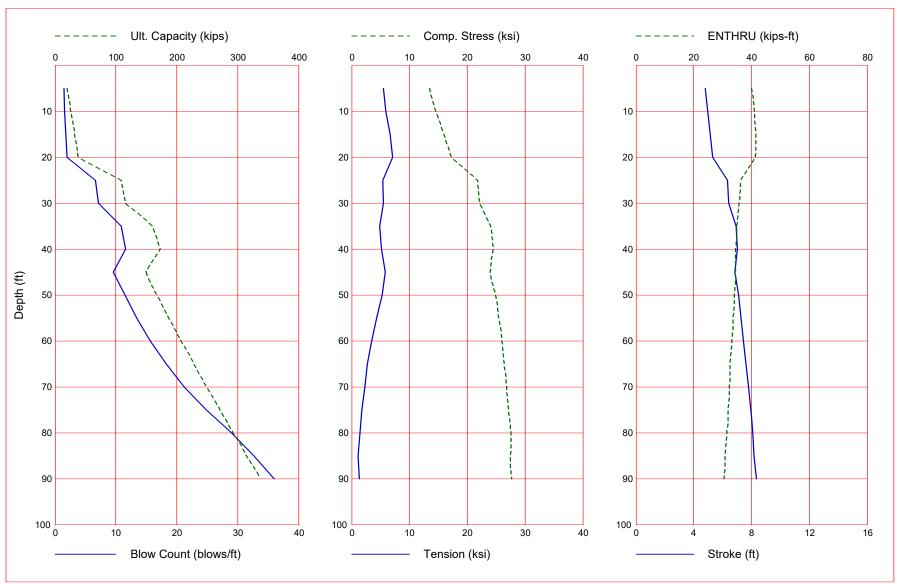
Total Continuous Driving Time 28.00 minutes; Total Number of Blows 1209 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3994 BT 2 24 in Pile BOR

May 08 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

TSVC, INC. - BIRMINGHAM 35185047 M3994 BT 2 24 in Pile BOR


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	25.8	11.7	14.1	1.6	14.505	-5.823	4.97	41.3
10.0	37.7	23.6	14.1	2.0	17.204	-6.967	5.32	41.4
15.0	49.9	35.7	14.1	2.6	19.012	-7.406	5.62	39.9
20.0	62.3	48.2	14.1	3.5	20.363	-7.435	5.89	38.4
25.0	88.5	67.3	21.2	5.4	22.227	-6.660	6.30	36.3
30.0	108.0	86.8	21.2	7.1	23.531	-6.012	6.59	35.2
35.0	213.9	100.2	113.7	16.5	25.988	-3.335	7.42	33.5
40.0	228.9	115.2	113.7	17.7	26.451	-3.648	7.50	33.3
45.0	223.2	152.6	70.7	17.2	26.559	-3.176	7.55	32.9
50.0	261.5	190.9	70.7	22.6	27.484	-1.878	7.82	32.4
55.0	300.8	230.1	70.7	29.0	28.011	-1.390	8.07	31.9
60.0	340.9	270.3	70.7	34.5	28.654	-0.790	8.24	31.2
65.0	382.0	311.4	70.7	40.7	29.022	-0.780	8.47	31.5
70.0	424.1	353.4	70.7	48.1	29.568	-1.301	8.65	31.8
75.0	467.1	396.4	70.7	57.2	29.720	-1.128	8.83	31.9
80.0	511.0	440.3	70.7	68.4	30.202	-0.553	8.98	32.1
85.0	555.9	485.2	70.7	82.9	30.075	-0.112	9.11	32.0
88.0	583.2	512.6	70.7	93.8	30.060	0.000	9.18	31.7
90.0	601.7	531.0	70.7	102.2	30.038	0.000	9.22	31.4

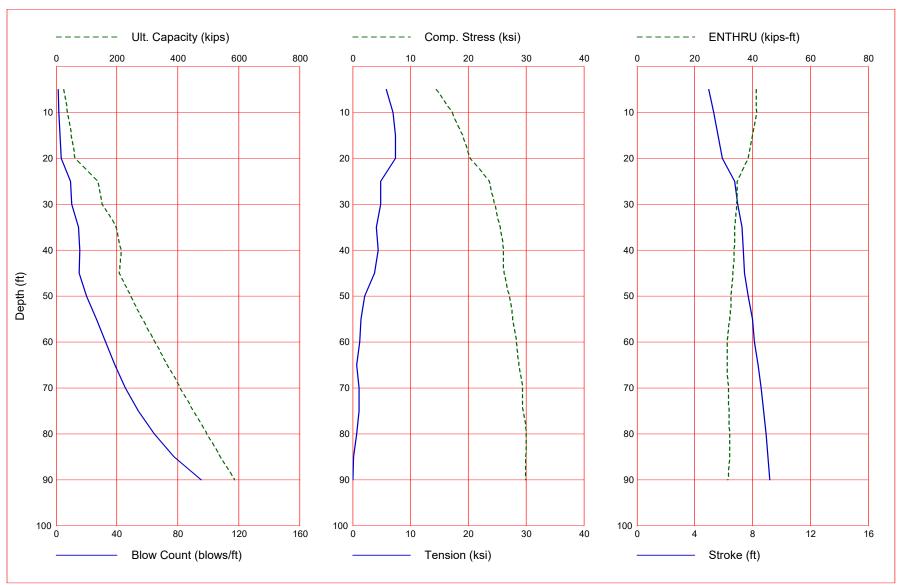
Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

Total Continuous Driving Time 62.00 minutes; Total Number of Blows 2533 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3994 BT 3 24 in Pile EOD

May 07 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	20.0	5.8	14.1	1.5	13.459	-5.488	4.81	40.0
10.0	25.9	11.8	14.1	1.6	14.552	-5.908	4.97	41.1
15.0	32.0	17.9	14.1	1.8	15.995	-6.625	5.16	41.4
20.0	38.2	24.1	14.1	2.0	17.267	-7.080	5.33	41.2
25.0	108.6	29.3	79.3	6.6	21.781	-5.394	6.34	36.2
30.0	114.7	35.4	79.3	7.1	22.177	-5.455	6.44	35.8
35.0	160.3	46.6	113.7	10.9	24.001	-4.864	6.94	34.8
40.0	172.8	59.1	113.7	11.6	24.494	-5.205	7.03	34.5
45.0	148.5	77.8	70.7	9.6	23.999	-5.809	6.84	34.5
50.0	167.6	96.9	70.7	11.5	24.940	-5.252	7.10	34.1
55.0	187.2	116.5	70.7	13.4	25.438	-4.354	7.28	33.6
60.0	207.3	136.6	70.7	15.6	26.002	-3.463	7.45	33.1
65.0	227.9	157.2	70.7	18.3	26.417	-2.693	7.62	32.6
70.0	248.9	178.2	70.7	21.2	26.831	-2.281	7.77	32.3
75.0	270.4	199.7	70.7	24.9	27.182	-1.800	7.94	31.9
80.0	292.3	221.7	70.7	29.0	27.585	-1.421	8.09	31.5
85.0	314.8	244.1	70.7	32.7	27.499	-1.124	8.18	30.8
90.0	337.7	267.0	70.7	36.0	27.722	-1.326	8.34	30.3

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

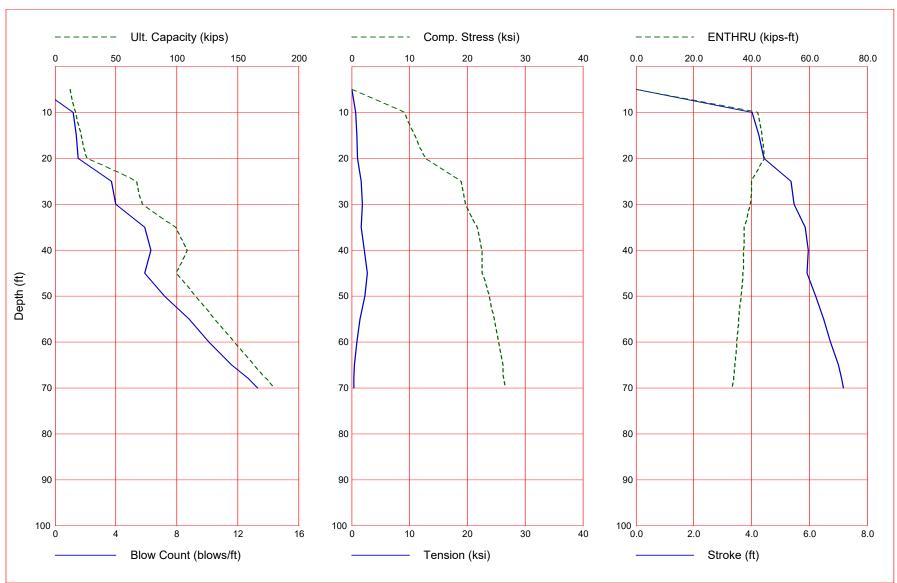
Total Continuous Driving Time 28.00 minutes; Total Number of Blows 1185 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3994 BT 3 24 in Pile BOR

May 07 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

TSVC, INC. - BIRMINGHAM 35185047 M3994 BT 3 24 in Pile BOR


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	25.8	11.7	14.1	1.6	14.505	-5.823	4.97	41.3
10.0	37.7	23.6	14.1	2.0	17.204	-6.967	5.32	41.4
15.0	49.9	35.7	14.1	2.6	19.012	-7.406	5.62	39.9
20.0	62.3	48.2	14.1	3.5	20.363	-7.435	5.89	38.4
25.0	138.0	58.7	79.3	9.4	23.638	-4.875	6.76	34.7
30.0	150.1	70.8	79.3	10.5	24.626	-4.810	6.98	34.5
35.0	198.0	84.2	113.7	14.7	25.537	-4.111	7.29	33.8
40.0	213.0	99.3	113.7	15.7	26.037	-4.382	7.38	33.5
45.0	207.3	136.6	70.7	15.3	26.147	-3.824	7.43	33.2
50.0	245.6	174.9	70.7	20.2	27.148	-2.089	7.71	32.6
55.0	284.8	214.1	70.7	26.7	27.723	-1.452	7.98	32.1
60.0	325.0	254.3	70.7	32.8	28.313	-1.180	8.13	31.3
65.0	366.1	295.4	70.7	38.6	28.731	-0.687	8.39	31.2
70.0	408.1	337.5	70.7	45.6	29.427	-1.126	8.58	31.6
75.0	451.1	380.4	70.7	54.1	29.542	-1.105	8.76	31.8
80.0	495.0	424.4	70.7	64.8	29.997	-0.679	8.92	32.0
85.0	539.9	469.2	70.7	77.6	29.942	-0.137	9.06	32.1
90.0	585.7	515.0	70.7	95.4	29.949	0.000	9.18	31.5

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

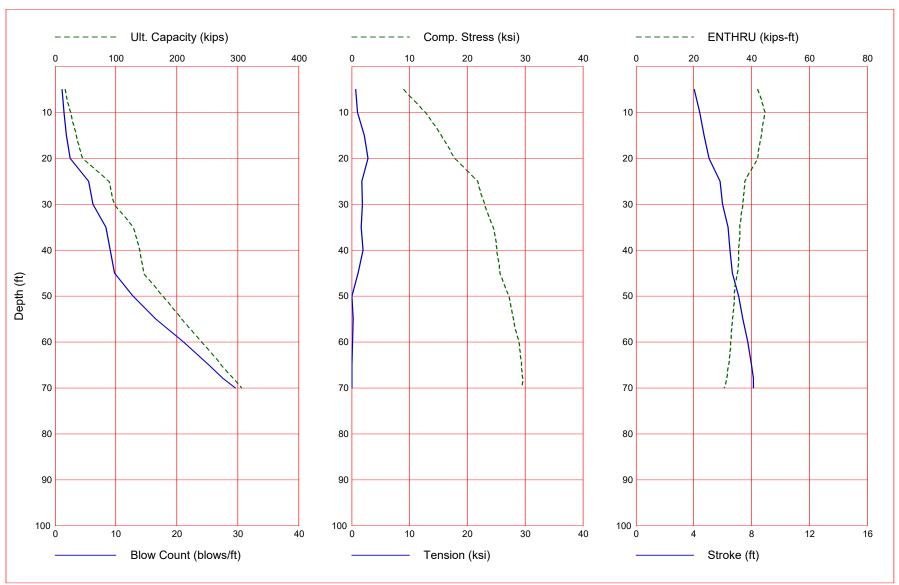
Total Continuous Driving Time 59.00 minutes; Total Number of Blows 2413 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3994 BT 4 18 in Pile EOD

May 07 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	12.3	4.4	7.9	-1.0	0.000	0.000	0.00	0.0
10.0	16.9	8.9	7.9	1.2	9.108	-0.712	4.03	42.1
15.0	21.5	13.6	7.9	1.4	10.948	-0.866	4.25	43.6
20.0	26.3	18.3	7.9	1.5	12.784	-1.047	4.42	44.4
25.0	66.9	22.3	44.6	3.7	18.929	-1.654	5.36	40.1
30.0	71.4	26.8	44.6	4.0	19.709	-1.862	5.47	39.6
35.0	99.2	35.2	64.0	5.9	21.749	-1.682	5.85	37.5
40.0	108.6	44.6	64.0	6.3	22.576	-2.236	5.97	37.2
45.0	99.7	60.0	39.8	5.9	22.604	-2.705	5.93	37.1
50.0	115.3	75.5	39.8	7.2	23.837	-2.246	6.22	36.3
55.0	131.1	91.4	39.8	8.8	24.666	-1.439	6.49	35.5
60.0	147.2	107.4	39.8	10.1	25.422	-0.929	6.72	34.8
65.0	163.5	123.7	39.8	11.6	26.147	-0.516	7.00	34.3
68.0	173.4	133.6	39.8	12.7	26.329	-0.378	7.11	33.8
70.0	180.0	140.3	39.8	13.3	26.477	-0.388	7.18	33.4


Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

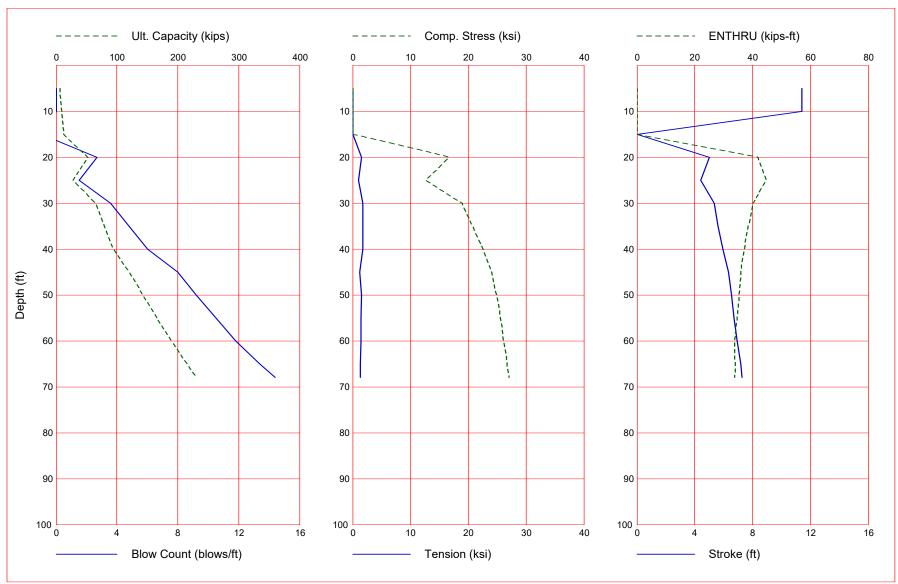
Total Continuous Driving Time 8.00 minutes; Total Number of Blows

367 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3994 BT 4 18 in Pile BOR

May 07 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	16.7	8.8	7.9	1.2	9.046	-0.677	4.02	42.1
10.0	25.8	17.8	7.9	1.5	12.705	-1.015	4.42	44.6
15.0	35.1	27.1	7.9	1.9	15.502	-2.161	4.71	43.5
20.0	44.6	36.7	7.9	2.5	17.801	-2.845	5.04	42.1
25.0	89.1	44.5	44.6	5.5	21.827	-1.763	5.81	37.6
30.0	98.2	53.6	44.6	6.2	23.038	-1.908	6.00	37.0
35.0	127.7	63.7	64.0	8.4	24.492	-1.681	6.37	36.0
40.0	138.9	75.0	64.0	9.1	25.101	-2.015	6.49	35.6
45.0	145.4	105.7	39.8	9.8	25.702	-1.132	6.67	35.0
50.0	176.6	136.9	39.8	12.8	27.224	0.000	7.10	34.0
55.0	208.3	168.5	39.8	16.6	27.959	-0.287	7.42	33.3
60.0	240.4	200.7	39.8	21.1	28.917	-0.171	7.75	32.7
65.0	273.0	233.2	39.8	25.3	29.352	0.000	8.01	32.0
68.0	292.8	253.0	39.8	27.6	29.575	0.000	8.13	31.4
70.0	306.1	266.3	39.8	29.6	29.518	0.000	8.14	30.6

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

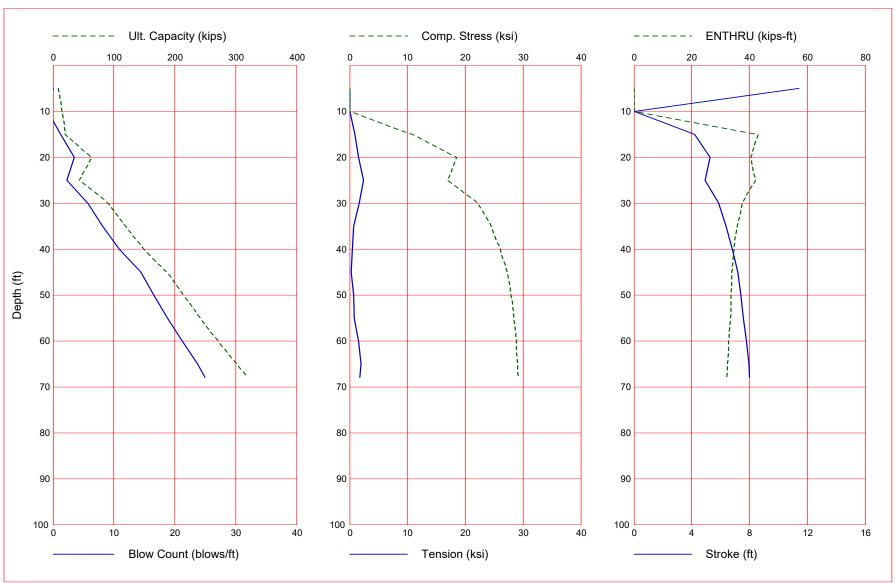
Total Continuous Driving Time 15.00 minutes; Total Number of Blows

678 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 1 18 in Pile EOD

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	6.2	2.2	4.0	0.0	0.000	0.000	11.43	0.0
10.0	9.6	4.9	4.8	0.0	0.000	0.000	11.43	0.0
15.0	12.4	7.6	4.8	-1.0	0.000	0.000	0.00	0.0
20.0	52.3	10.7	41.6	2.7	16.673	-1.584	5.01	42.0
25.0	27.5	15.6	11.9	1.5	12.655	-0.968	4.42	44.6
30.0	65.3	25.5	39.8	3.6	18.981	-1.762	5.35	40.2
35.0	79.5	39.7	39.8	4.8	20.798	-1.808	5.62	38.4
40.0	94.3	54.6	39.8	6.0	22.552	-1.709	5.94	37.2
45.0	119.8	72.1	47.7	8.0	24.047	-1.222	6.33	36.0
50.0	142.5	94.8	47.7	9.2	24.898	-1.504	6.54	35.4
55.0	165.9	118.2	47.7	10.5	25.519	-1.491	6.74	34.6
60.0	190.1	142.4	47.7	11.8	26.036	-1.437	6.92	33.9
65.0	215.1	167.4	47.7	13.4	26.756	-1.363	7.18	34.1
68.0	230.4	182.7	47.7	14.4	27.060	-1.382	7.29	33.9


Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

Total Continuous Driving Time 8.00 minutes; Total Number of Blows

366 (starting at penetration 5.0 ft)

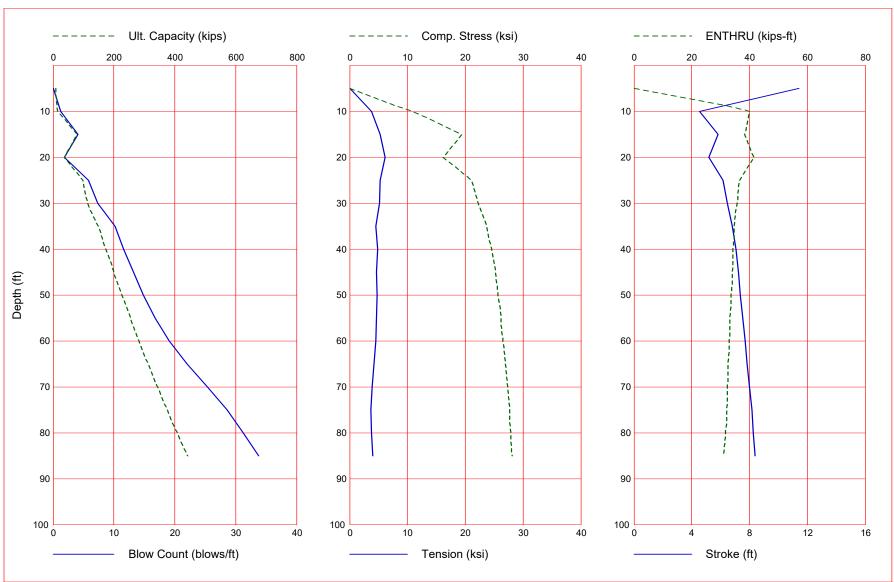
TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 1 18 in Pile BOR

May 07 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 1 18 in Pile BOR

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	8.3	4.3	4.0	0.0	0.000	0.000	11.43	0.0
10.0	14.5	9.7	4.8	-1.0	0.000	0.000	0.00	0.0
15.0	20.0	15.3	4.8	1.3	10.836	-0.909	4.22	43.0
20.0	63.0	21.3	41.6	3.5	18.466	-1.585	5.28	40.5
25.0	43.1	31.1	11.9	2.3	16.876	-2.437	4.91	42.2
30.0	90.8	51.0	39.8	5.7	22.212	-1.656	5.87	37.4
35.0	119.2	79.4	39.8	8.2	24.468	-0.689	6.38	35.8
40.0	148.9	109.2	39.8	10.9	26.090	-0.471	6.80	34.6
45.0	186.6	138.8	47.7	14.4	27.263	-0.308	7.21	33.8
50.0	213.8	166.1	47.7	16.6	27.889	-0.709	7.39	33.5
55.0	241.9	194.2	47.7	18.8	28.404	-0.850	7.59	33.3
60.0	270.9	223.2	47.7	21.2	28.814	-1.597	7.78	32.8
65.0	300.9	253.2	47.7	23.7	29.094	-1.925	7.94	32.4
68.0	319.3	271.6	47.7	25.0	29.224	-1.779	8.02	32.0


Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

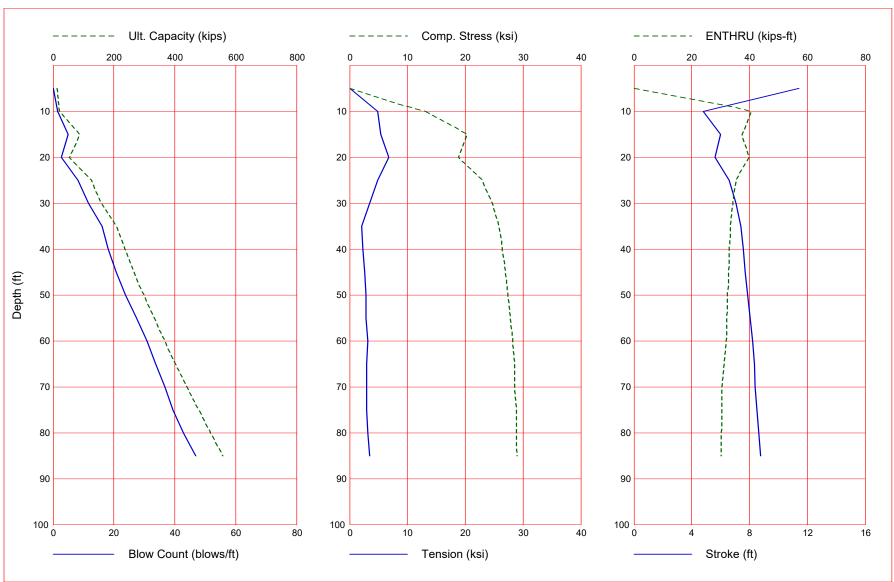
Total Continuous Driving Time 15.00 minutes; Total Number of Blows

645 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 2 24in Pile EOD

May 08 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	10.0	2.9	7.1	0.0	0.000	0.000	11.43	0.0
10.0	14.9	6.4	8.5	1.3	10.942	-3.836	4.54	39.9
15.0	77.6	10.2	67.4	4.1	19.314	-5.241	5.82	38.3
20.0	37.5	16.3	21.2	1.9	16.171	-6.144	5.18	41.4
25.0	98.6	27.9	70.7	5.8	21.044	-5.252	6.17	36.6
30.0	115.2	44.6	70.7	7.3	22.278	-5.198	6.45	35.7
35.0	148.7	63.9	84.8	10.2	23.783	-4.543	6.82	34.6
40.0	173.4	88.6	84.8	11.6	24.630	-4.808	7.07	34.3
45.0	199.1	114.3	84.8	13.2	25.177	-4.687	7.23	34.0
50.0	225.8	141.0	84.8	14.8	25.673	-4.759	7.37	33.6
55.0	253.6	168.8	84.8	16.8	26.157	-4.662	7.53	33.1
60.0	282.4	197.5	84.8	19.1	26.542	-4.497	7.68	32.9
65.0	312.2	227.3	84.8	22.0	26.985	-4.201	7.84	32.6
70.0	343.0	258.2	84.8	25.4	27.387	-3.871	8.00	32.4
75.0	374.8	290.0	84.8	28.6	27.680	-3.710	8.15	32.1
80.0	407.7	322.9	84.8	31.2	27.875	-3.810	8.27	31.6
85.0	441.6	356.8	84.8	33.8	28.110	-3.982	8.38	31.0

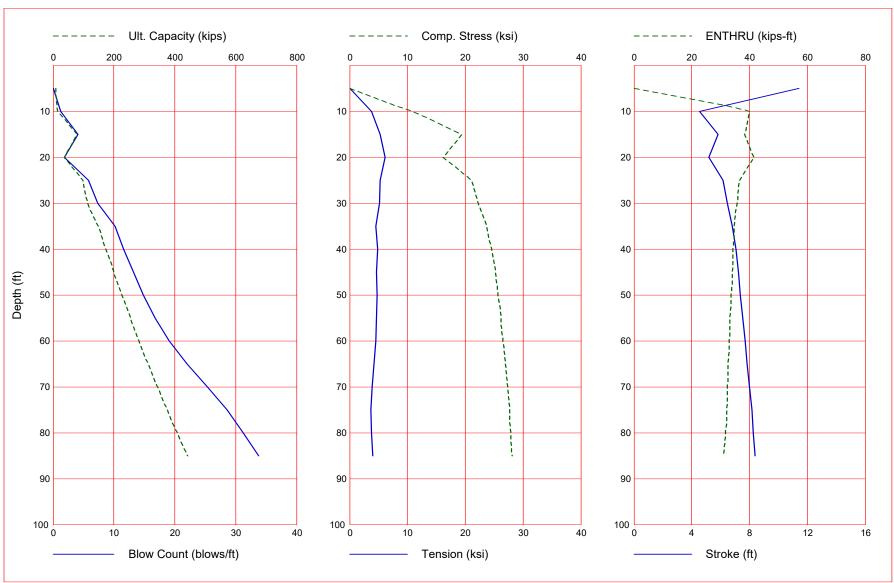
Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

Total Continuous Driving Time 27.00 minutes; Total Number of Blows 1153 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 2 24in Pile BOR

May 08 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	12.9	5.8	7.1	0.0	0.000	0.000	11.43	0.0
10.0	21.3	12.9	8.5	1.5	13.132	-4.836	4.78	40.6
15.0	87.8	20.4	67.4	5.0	20.279	-5.346	6.01	37.5
20.0	53.8	32.6	21.2	2.8	18.810	-6.797	5.60	39.8
25.0	126.4	55.7	70.7	8.3	23.002	-4.813	6.61	35.3
30.0	159.8	89.1	70.7	11.6	24.705	-3.479	7.07	34.3
35.0	206.8	122.0	84.8	16.0	25.869	-2.036	7.42	33.4
40.0	236.4	151.6	84.8	18.2	26.418	-2.330	7.57	33.0
45.0	267.3	182.4	84.8	20.8	26.917	-2.597	7.72	32.7
50.0	299.3	214.5	84.8	23.8	27.343	-2.834	7.89	32.3
55.0	332.7	247.8	84.8	27.5	27.837	-2.867	8.05	32.1
60.0	367.2	282.4	84.8	30.9	28.188	-3.127	8.21	31.8
65.0	403.0	318.1	84.8	33.8	28.548	-2.966	8.34	31.3
70.0	439.9	355.1	84.8	36.7	28.560	-2.889	8.39	30.5
75.0	478.2	393.3	84.8	39.3	28.837	-2.921	8.52	30.3
80.0	517.6	432.8	84.8	42.9	28.905	-3.148	8.64	30.2
85.0	558.3	473.4	84.8	46.9	28.993	-3.489	8.77	30.1

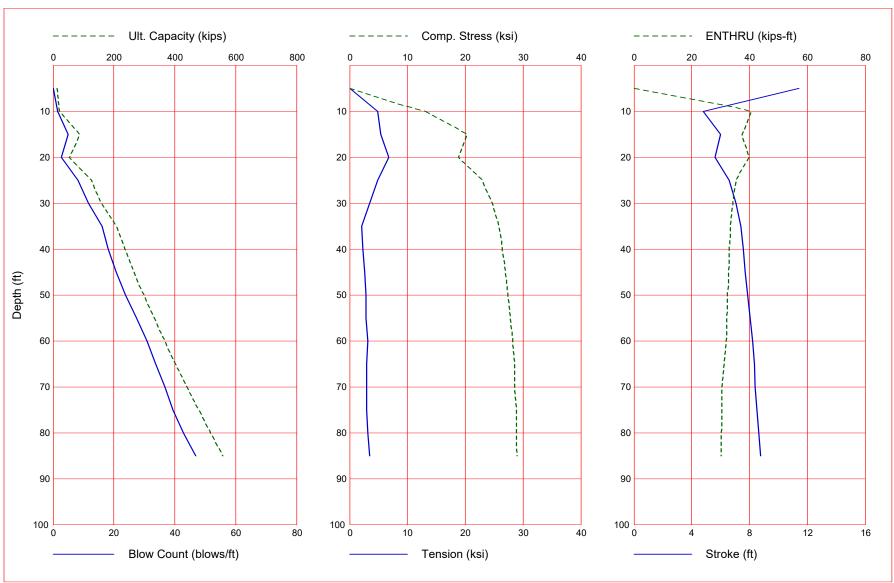
Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

Total Continuous Driving Time 41.00 minutes; Total Number of Blows 1715 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 3 24in Pile EOD

May 08 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	10.0	2.9	7.1	0.0	0.000	0.000	11.43	0.0
10.0	14.9	6.4	8.5	1.3	10.942	-3.836	4.54	39.9
15.0	77.6	10.2	67.4	4.1	19.314	-5.241	5.82	38.3
20.0	37.5	16.3	21.2	1.9	16.171	-6.144	5.18	41.4
25.0	98.6	27.9	70.7	5.8	21.044	-5.252	6.17	36.6
30.0	115.2	44.6	70.7	7.3	22.278	-5.198	6.45	35.7
35.0	148.7	63.9	84.8	10.2	23.783	-4.543	6.82	34.6
40.0	173.4	88.6	84.8	11.6	24.630	-4.808	7.07	34.3
45.0	199.1	114.3	84.8	13.2	25.177	-4.687	7.23	34.0
50.0	225.8	141.0	84.8	14.8	25.673	-4.759	7.37	33.6
55.0	253.6	168.8	84.8	16.8	26.157	-4.662	7.53	33.1
60.0	282.4	197.5	84.8	19.1	26.542	-4.497	7.68	32.9
65.0	312.2	227.3	84.8	22.0	26.985	-4.201	7.84	32.6
70.0	343.0	258.2	84.8	25.4	27.387	-3.871	8.00	32.4
75.0	374.8	290.0	84.8	28.6	27.680	-3.710	8.15	32.1
80.0	407.7	322.9	84.8	31.2	27.875	-3.810	8.27	31.6
85.0	441.6	356.8	84.8	33.8	28.110	-3.982	8.38	31.0

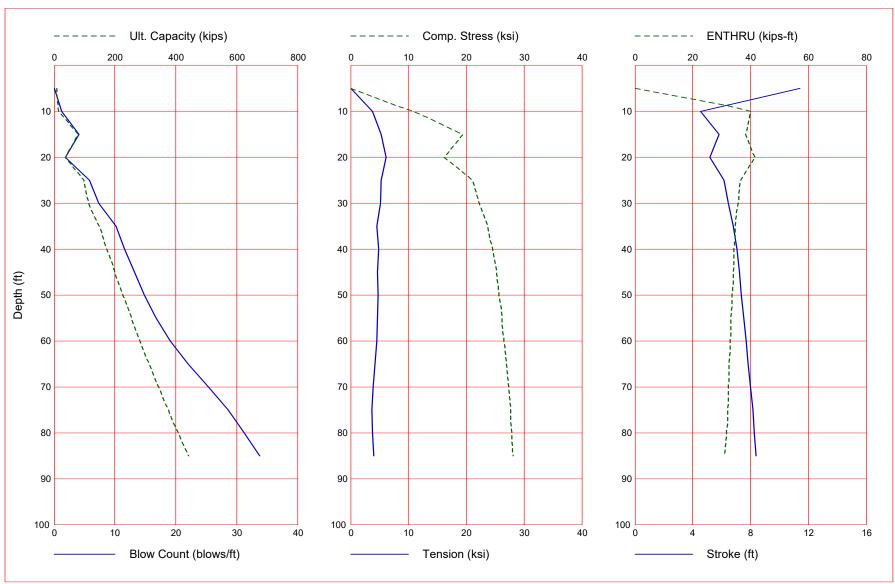
Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

Total Continuous Driving Time 27.00 minutes; Total Number of Blows 1153 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 3 24in Pile BOR

May 08 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	12.9	5.8	7.1	0.0	0.000	0.000	11.43	0.0
10.0	21.3	12.9	8.5	1.5	13.132	-4.836	4.78	40.6
15.0	87.8	20.4	67.4	5.0	20.279	-5.346	6.01	37.5
20.0	53.8	32.6	21.2	2.8	18.810	-6.797	5.60	39.8
25.0	126.4	55.7	70.7	8.3	23.002	-4.813	6.61	35.3
30.0	159.8	89.1	70.7	11.6	24.705	-3.479	7.07	34.3
35.0	206.8	122.0	84.8	16.0	25.869	-2.036	7.42	33.4
40.0	236.4	151.6	84.8	18.2	26.418	-2.330	7.57	33.0
45.0	267.3	182.4	84.8	20.8	26.917	-2.597	7.72	32.7
50.0	299.3	214.5	84.8	23.8	27.343	-2.834	7.89	32.3
55.0	332.7	247.8	84.8	27.5	27.837	-2.867	8.05	32.1
60.0	367.2	282.4	84.8	30.9	28.188	-3.127	8.21	31.8
65.0	403.0	318.1	84.8	33.8	28.548	-2.966	8.34	31.3
70.0	439.9	355.1	84.8	36.7	28.560	-2.889	8.39	30.5
75.0	478.2	393.3	84.8	39.3	28.837	-2.921	8.52	30.3
80.0	517.6	432.8	84.8	42.9	28.905	-3.148	8.64	30.2
85.0	558.3	473.4	84.8	46.9	28.993	-3.489	8.77	30.1

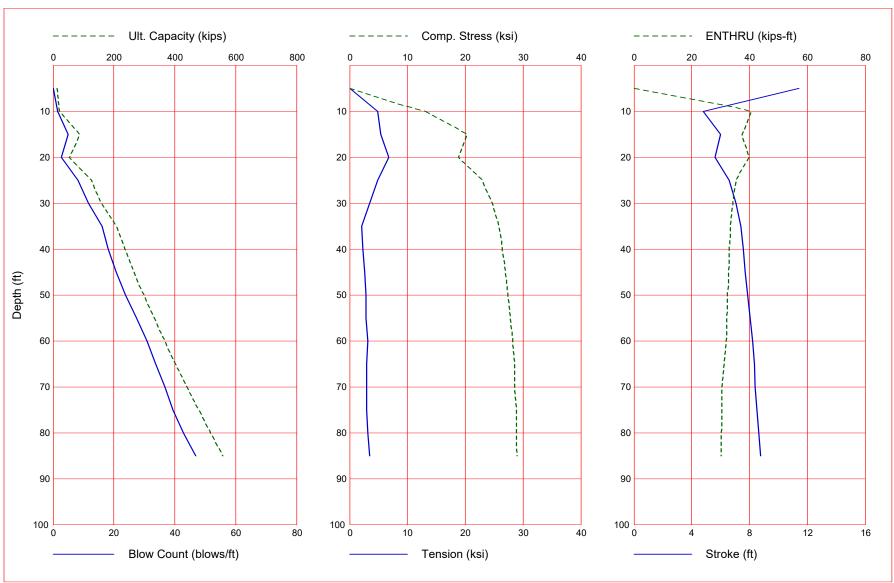
Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

Total Continuous Driving Time 41.00 minutes; Total Number of Blows 1715 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 4 24in Pile EOD

May 08 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	10.0	2.9	7.1	0.0	0.000	0.000	11.43	0.0
10.0	14.9	6.4	8.5	1.3	10.942	-3.836	4.54	39.9
15.0	77.6	10.2	67.4	4.1	19.314	-5.241	5.82	38.3
20.0	37.5	16.3	21.2	1.9	16.171	-6.144	5.18	41.4
25.0	98.6	27.9	70.7	5.8	21.044	-5.252	6.17	36.6
30.0	115.2	44.6	70.7	7.3	22.278	-5.198	6.45	35.7
35.0	148.7	63.9	84.8	10.2	23.783	-4.543	6.82	34.6
40.0	173.4	88.6	84.8	11.6	24.630	-4.808	7.07	34.3
45.0	199.1	114.3	84.8	13.2	25.177	-4.687	7.23	34.0
50.0	225.8	141.0	84.8	14.8	25.673	-4.759	7.37	33.6
55.0	253.6	168.8	84.8	16.8	26.157	-4.662	7.53	33.1
60.0	282.4	197.5	84.8	19.1	26.542	-4.497	7.68	32.9
65.0	312.2	227.3	84.8	22.0	26.985	-4.201	7.84	32.6
70.0	343.0	258.2	84.8	25.4	27.387	-3.871	8.00	32.4
75.0	374.8	290.0	84.8	28.6	27.680	-3.710	8.15	32.1
80.0	407.7	322.9	84.8	31.2	27.875	-3.810	8.27	31.6
85.0	441.6	356.8	84.8	33.8	28.110	-3.982	8.38	31.0

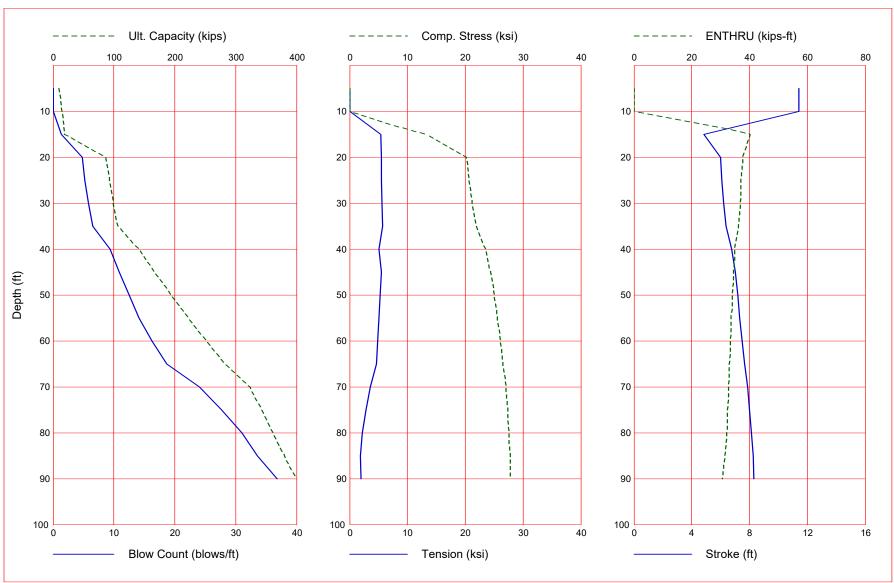
Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

Total Continuous Driving Time 27.00 minutes; Total Number of Blows 1153 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 4 24in Pile BOR

May 08 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	12.9	5.8	7.1	0.0	0.000	0.000	11.43	0.0
10.0	21.3	12.9	8.5	1.5	13.132	-4.836	4.78	40.6
15.0	87.8	20.4	67.4	5.0	20.279	-5.346	6.01	37.5
20.0	53.8	32.6	21.2	2.8	18.810	-6.797	5.60	39.8
25.0	126.4	55.7	70.7	8.3	23.002	-4.813	6.61	35.3
30.0	159.8	89.1	70.7	11.6	24.705	-3.479	7.07	34.3
35.0	206.8	122.0	84.8	16.0	25.869	-2.036	7.42	33.4
40.0	236.4	151.6	84.8	18.2	26.418	-2.330	7.57	33.0
45.0	267.3	182.4	84.8	20.8	26.917	-2.597	7.72	32.7
50.0	299.3	214.5	84.8	23.8	27.343	-2.834	7.89	32.3
55.0	332.7	247.8	84.8	27.5	27.837	-2.867	8.05	32.1
60.0	367.2	282.4	84.8	30.9	28.188	-3.127	8.21	31.8
65.0	403.0	318.1	84.8	33.8	28.548	-2.966	8.34	31.3
70.0	439.9	355.1	84.8	36.7	28.560	-2.889	8.39	30.5
75.0	478.2	393.3	84.8	39.3	28.837	-2.921	8.52	30.3
80.0	517.6	432.8	84.8	42.9	28.905	-3.148	8.64	30.2
85.0	558.3	473.4	84.8	46.9	28.993	-3.489	8.77	30.1

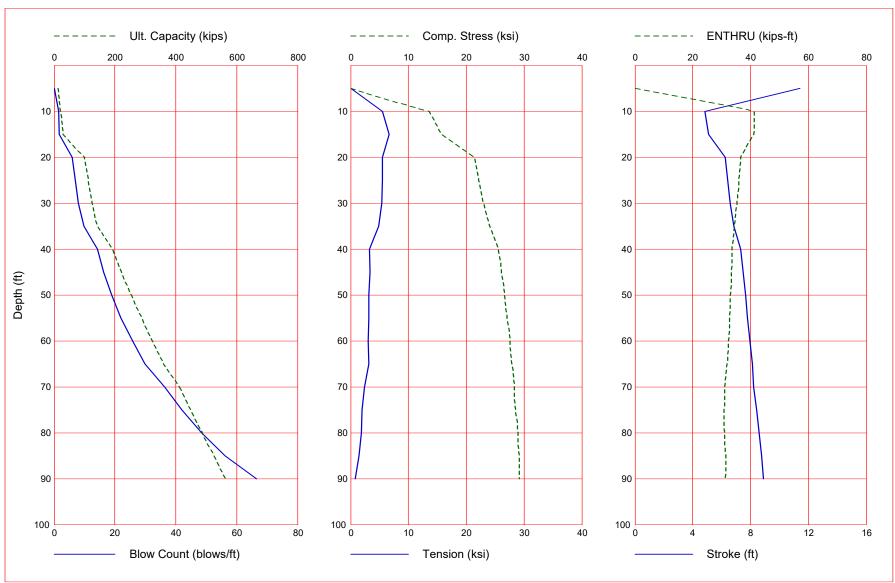
Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

Total Continuous Driving Time 41.00 minutes; Total Number of Blows 1715 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 5 24in Pile EOD

May 08 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	10.0	2.9	7.1	0.0	0.000	0.000	11.43	0.0
10.0	14.9	6.4	8.5	0.0	0.000	0.000	11.43	0.0
15.0	18.5	10.1	8.5	1.4	13.228	-5.385	4.83	40.2
20.0	87.0	14.0	73.1	4.8	20.211	-5.443	6.01	37.6
25.0	92.2	19.1	73.1	5.2	20.614	-5.466	6.09	37.1
30.0	98.6	25.6	73.1	5.8	21.197	-5.564	6.20	36.7
35.0	106.8	36.1	70.7	6.5	21.920	-5.697	6.36	36.1
40.0	141.1	56.3	84.8	9.4	23.510	-5.098	6.75	34.8
45.0	167.0	82.2	84.8	10.9	24.400	-5.464	7.02	34.5
50.0	194.0	109.2	84.8	12.5	25.065	-5.246	7.18	34.1
55.0	222.2	137.4	84.8	14.1	25.526	-5.083	7.33	33.7
60.0	251.5	166.7	84.8	16.3	26.095	-4.849	7.50	33.4
65.0	282.0	197.2	84.8	18.7	26.471	-4.606	7.65	33.0
70.0	323.6	224.7	99.0	24.1	27.090	-3.595	7.88	32.7
75.0	342.3	243.3	99.0	27.7	27.352	-2.850	8.00	32.4
80.0	361.2	262.2	99.0	31.0	27.611	-2.182	8.14	32.0
85.0	380.3	281.3	99.0	33.6	27.751	-1.860	8.25	31.5
90.0	399.6	300.7	99.0	36.8	27.788	-2.003	8.31	30.7

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

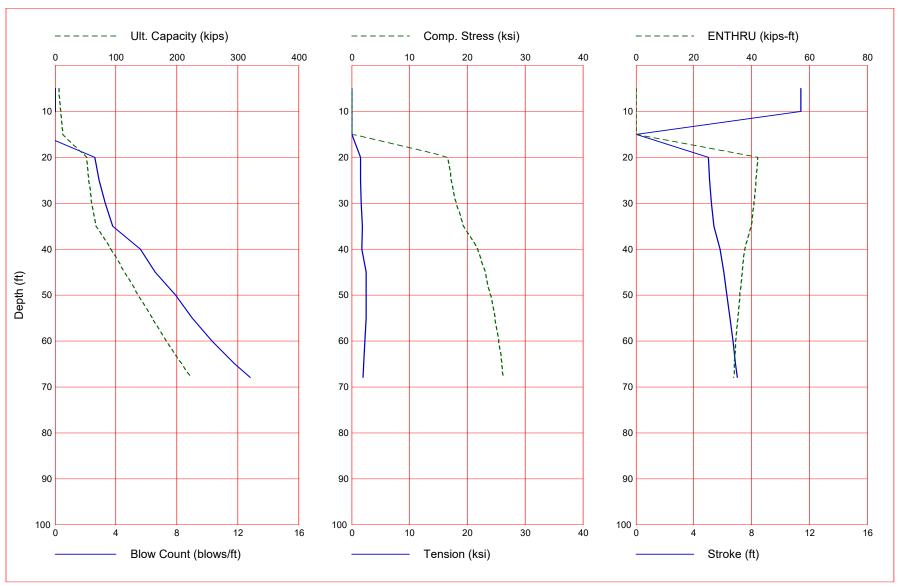
Total Continuous Driving Time 28.00 minutes; Total Number of Blows 1206 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 5 24in Pile BOR

May 08 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 5 24in Pile BOR


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	12.9	5.8	7.1	0.0	0.000	0.000	11.43	0.0
10.0	21.3	12.9	8.5	1.5	13.613	-5.441	4.86	41.2
15.0	28.6	20.1	8.5	1.7	15.779	-6.712	5.11	41.1
20.0	101.0	27.9	73.1	6.0	21.350	-5.482	6.24	36.5
25.0	111.4	38.3	73.1	6.9	22.122	-5.476	6.41	35.9
30.0	124.2	51.2	73.1	8.1	23.006	-5.350	6.60	35.3
35.0	142.9	72.2	70.7	9.9	24.023	-4.821	6.85	34.5
40.0	191.3	106.5	84.8	14.3	25.580	-3.274	7.30	33.7
45.0	222.4	137.6	84.8	16.4	26.055	-3.337	7.47	33.3
50.0	254.9	170.0	84.8	18.9	26.616	-3.153	7.64	33.0
55.0	288.7	203.9	84.8	22.0	27.048	-3.198	7.80	32.7
60.0	323.8	239.0	84.8	25.8	27.619	-3.091	7.97	32.4
65.0	360.4	275.6	84.8	29.9	27.882	-3.119	8.11	31.9
70.0	412.0	313.0	99.0	36.3	28.280	-2.443	8.23	31.1
75.0	449.3	350.3	99.0	42.0	28.585	-1.974	8.44	30.9
80.0	487.0	388.0	99.0	48.5	28.940	-1.882	8.61	31.1
85.0	525.2	426.3	99.0	56.3	29.126	-1.454	8.75	31.4
90.0	564.0	465.0	99.0	66.6	29.211	-0.774	8.90	31.2

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

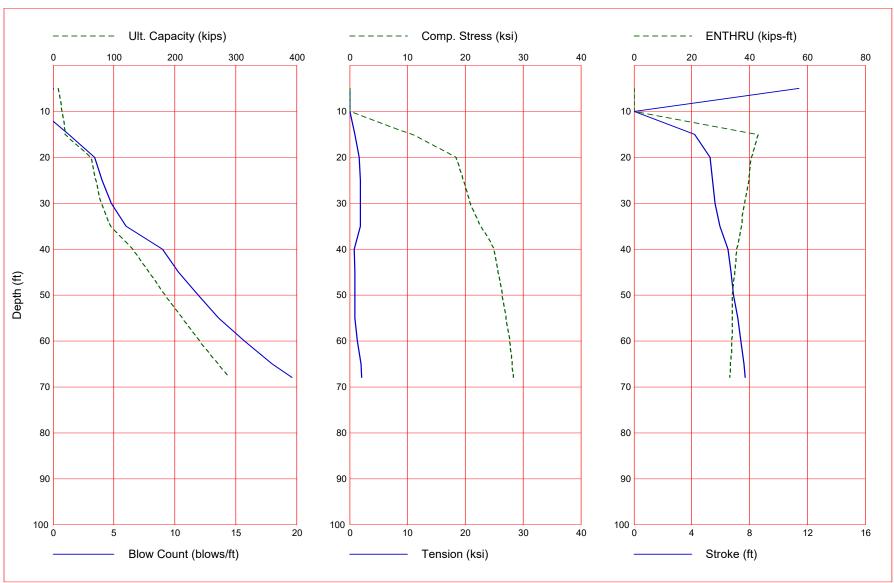
Total Continuous Driving Time 46.00 minutes; Total Number of Blows 1888 (starting at penetration 5.0 ft)

TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 6 18 in Pile EOD

May 08 2020 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	6.2	2.2	4.0	0.0	0.000	0.000	11.43	0.0
10.0	9.6	4.9	4.8	0.0	0.000	0.000	11.43	0.0
15.0	12.4	7.6	4.8	-1.0	0.000	0.000	0.00	0.0
20.0	51.7	10.6	41.1	2.6	16.594	-1.574	5.00	42.1
25.0	55.6	14.5	41.1	2.9	17.272	-1.599	5.10	41.5
30.0	60.4	19.3	41.1	3.3	18.107	-1.672	5.22	40.9
35.0	67.3	27.6	39.8	3.8	19.348	-1.918	5.41	39.9
40.0	92.0	44.3	47.7	5.6	21.793	-1.807	5.81	37.6
45.0	113.5	65.8	47.7	6.6	23.086	-2.502	6.06	36.8
50.0	135.9	88.2	47.7	7.9	24.030	-2.534	6.31	36.0
55.0	159.1	111.4	47.7	9.0	24.781	-2.550	6.52	35.4
60.0	183.1	135.4	47.7	10.3	25.392	-2.273	6.72	34.5
65.0	208.0	160.3	47.7	11.8	25.922	-2.103	6.91	34.1
68.0	223.3	175.5	47.7	12.8	26.227	-2.004	7.03	33.9


Gain/Loss 1 at Shaft and Toe 0.500 / 1.000

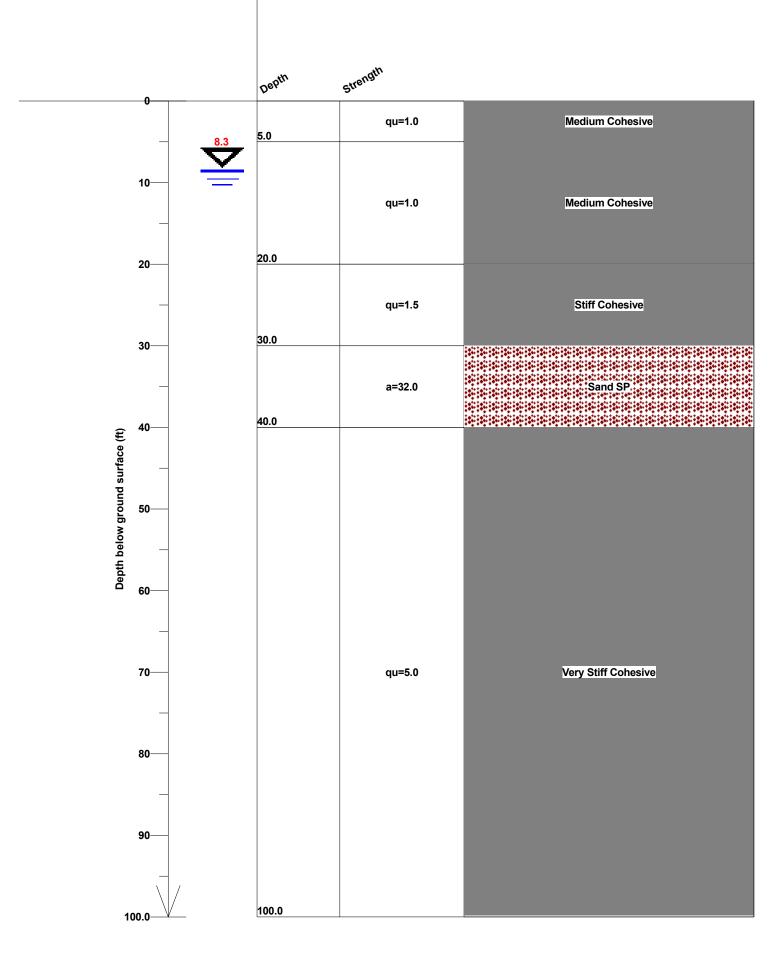
Total Continuous Driving Time 7.00 minutes; Total Number of Blows

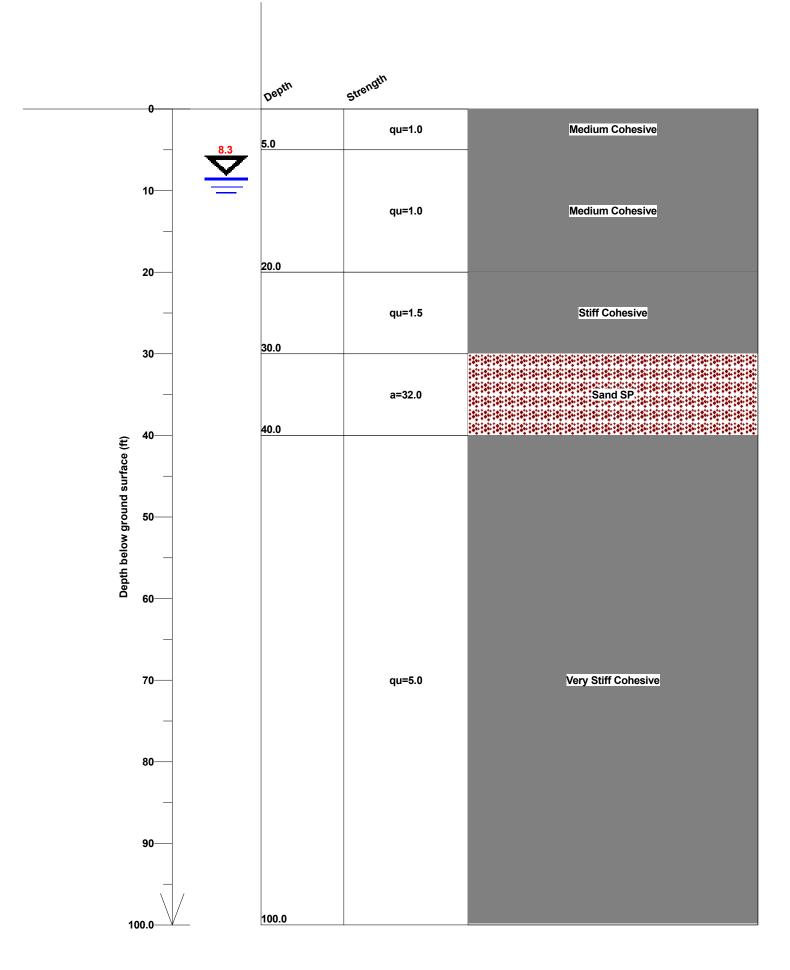
325 (starting at penetration 5.0 ft)

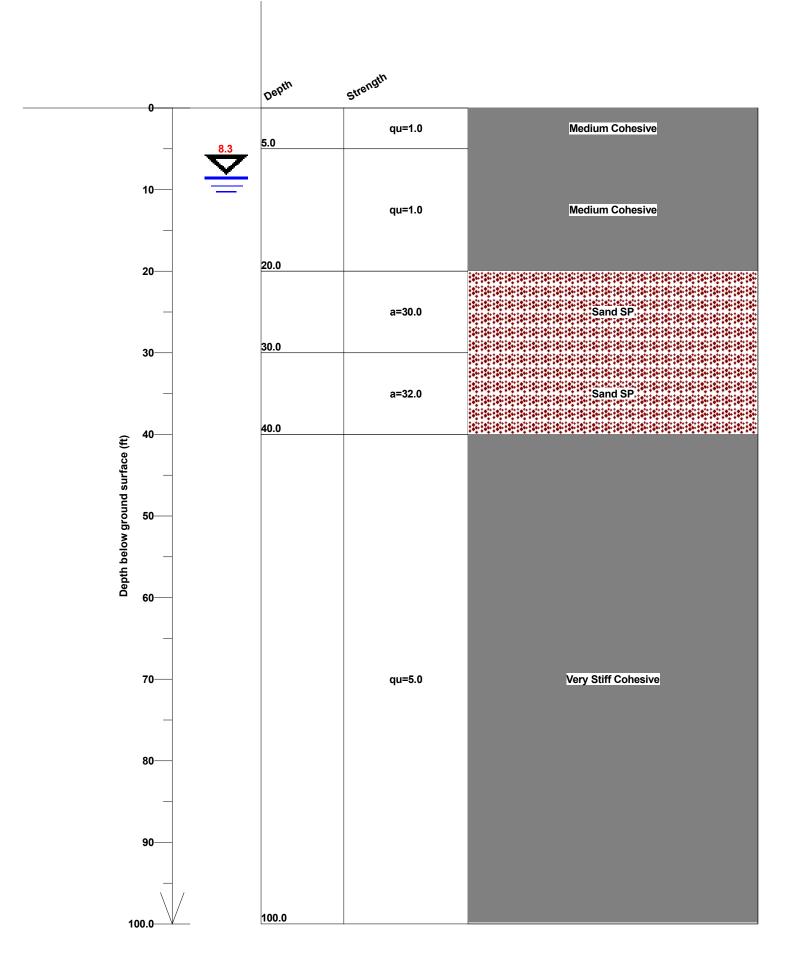
TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 6 18 in Pile BOR

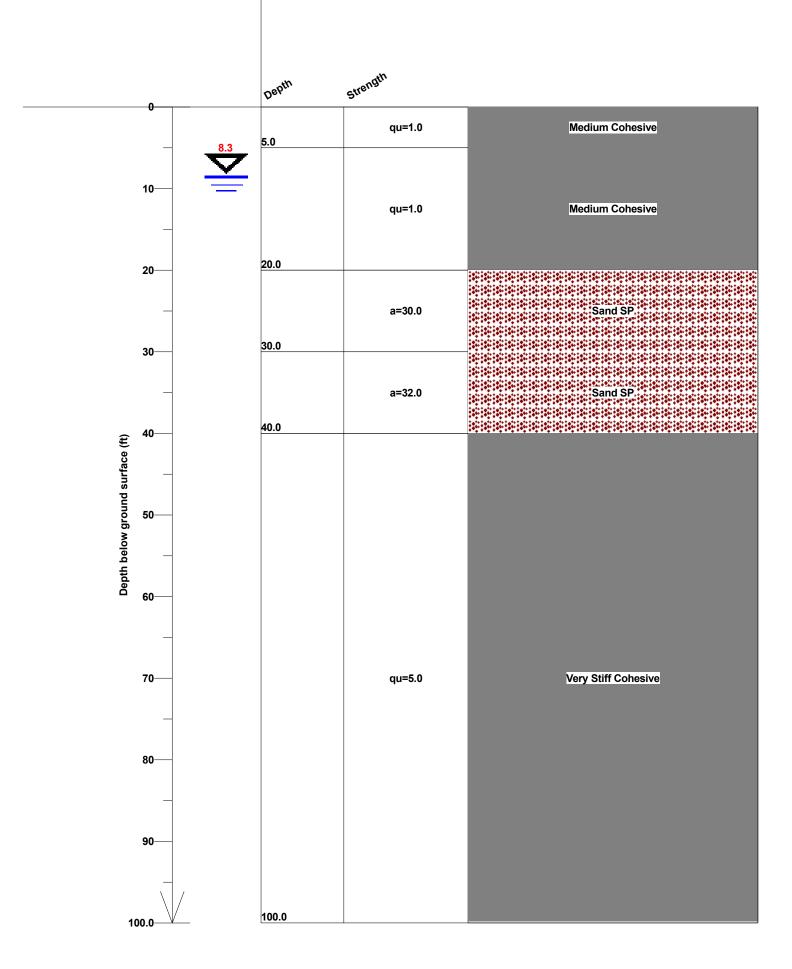
May 08 2020 GRLWEAP Version 2010

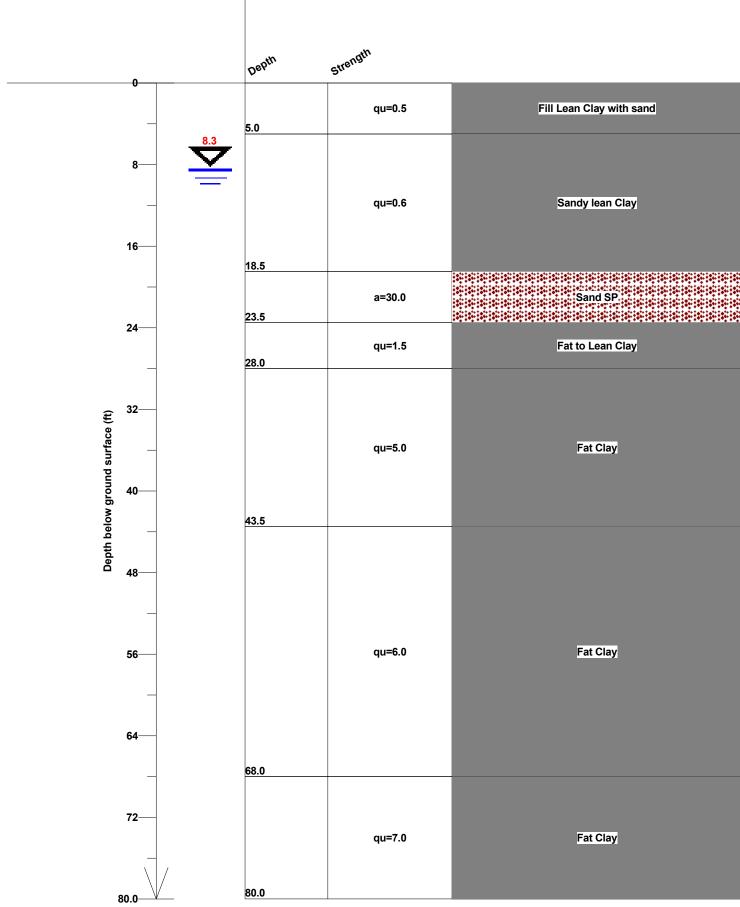
Gain/Loss 1 at Shaft and Toe 1.000 / 1.000


TSVC, INC. - BIRMINGHAM 35185047 M3995 BT 6 18 in Pile BOR


Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	8.3	4.3	4.0	0.0	0.000	0.000	11.43	0.0
10.0	14.5	9.7	4.8	-1.0	0.000	0.000	0.00	0.0
15.0	20.0	15.3	4.8	1.3	10.836	-0.909	4.22	43.0
20.0	62.3	21.2	41.1	3.4	18.415	-1.612	5.27	40.6
25.0	70.1	29.0	41.1	4.0	19.640	-1.830	5.46	39.7
30.0	79.7	38.6	41.1	4.8	20.851	-1.895	5.63	38.3
35.0	94.9	55.2	39.8	6.0	22.711	-1.831	5.95	37.2
40.0	131.2	83.4	47.7	9.0	24.966	-0.806	6.50	35.6
45.0	157.1	109.3	47.7	10.3	25.654	-0.938	6.71	34.8
50.0	183.9	136.2	47.7	11.9	26.380	-0.937	6.91	34.1
55.0	211.8	164.1	47.7	13.6	27.073	-0.884	7.19	34.0
60.0	240.6	192.9	47.7	15.7	27.708	-1.375	7.39	33.8
65.0	270.4	222.7	47.7	18.0	28.103	-1.941	7.60	33.4
68.0	288.7	241.0	47.7	19.6	28.340	-2.058	7.72	33.1


Gain/Loss 1 at Shaft and Toe 1.000 / 1.000


Total Continuous Driving Time 11.00 minutes; Total Number of Blows


500 (starting at penetration 5.0 ft)

