ARKANSAS DEPARTMENT OF TRANSPORTATION

SUBSURFACE INVESTIGATION

STATE JOB NO.										
FEDERAL AID PROJECT NO.	STPB-0076(297)									
MULBERRY RIVER STR. & APPRS. (S)										
COUNTY ROAD NO.	<u>CRS 45 & 67</u>									
IN	FRANKLIN	COUNTY								

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

ARKANSAS DEPARTMENT OF TRANSPORTATION

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

March 24, 2021

TO: Mr. Rick Ellis, Bridge Engineer

SUBJECT: Job No. BR7615 Mulberry River Str. & Apprs. (S) Crawford & Franklin Counties County Road 67

Submitted herein are foundation recommendations for construction of the replacement bridge over Mulberry River and Mulberry Relief Creek on County Road 67 in Crawford and Franklin Counties. Recommendations for the approach embankments will be provided in a supplemental report.

This report includes a brief summary of the geology and site conditions, rock core unconfined compression test, and the logs of the borings conducted for the structures and approaches of the above referenced project. Following the summary are the foundation recommendations. D₅₀ data for scour analysis is also included in this foundations report.

Introduction

This project consists of replacing two existing bridges on County Road 67 with a single bridge approximately 600 feet in length and 30.5 feet in width, that will span over the Mulberry River and Mulberry Relief Creek. The new replacement bridge will be constructed on an offset alignment and is located south of the existing bridges.

Field Investigation

A subsurface investigation was performed by ARDOT personnel to complete the requested borings. The borings were drilled between February 2, 2021 and March 2, 2021, using auger boring and rock coring methods. A total of five (5) borings were requested for this bridge and four (4) borings were completed. The boring in the river channel was not performed due to high water levels and inaccessibility to the planned location. Borings were slightly offset due to height restrictions and steep slopes. Groundwater was observed in Boring 3 and Boring 4. Groundwater was not observed in the other borings. Standard Penetration Test (SPT) was conducted for soil sampling and field testing. The approximate locations of the borings are presented on the Plan of Borings included in Attachment A.

Lab Investigation

All samples were brought to the Materials laboratory for testing and classified by experience personnel in accordance with the United Soil Classification (USCS) and American Association of State Highway and Transportation Officials (AASHTO) soil classification system. Representative lab tests were performed to determine moisture content and gradation of soil samples. Rock core compressive strength was determined using uniaxial compressive test on

intact rock cores. The rock core compressive strength is presented in Attachment B. The laboratory test and their corresponding test methods are listed in Table 1.

Laboratory Test	ASTM	AASHTO
Moisture Content	D2216	T 265
Grain Size Analysis by Sieving	D6913	T 88
Unconfined Compression of Rock Cores	D7012, Method C	

Table 1: Summary of Laboratory Tests and Me

Site Conditions

This project consists of replacing the two existing bridges on Crawford Co. Rd. 45 and Franklin Co. Rd. 67 with a single bridge. Bridge 1 (existing bridge over Mulberry River) is a single lane, 4-span, southwest to northeast oriented steel truss bridge. The superstructure consists of corrugated steel bridge pans with an asphalt overlay. The decking is supported by three intermediate bents consisting of metal caissons filled with concrete resting on spread footings and cast-in-place concrete end walls and wing walls. The southwest bridge end rests on shale that is dipping to the north. There are steel guardrails both leading up to and crossing the bridge. The existing bridge crosses the Mulberry River where the river, flowing from the north, takes a sharp 90 degrees towards the east.

Bridge 2 (existing bridge over Mulberry Relief Creek) is a southwest to northeast oriented, single lane, 2-span bridge. Mulberry Relief Creek joins the Mulberry River south of the existing bridge. The superstructure of the bridge consists of cast-in-place concrete decking supported by steel beams. The steel beams are supported by one intermediate bent on a spread footing and cast-in-place concrete end walls and wing walls. There are steel guardrails spanning the bridge. There are remnants of a previous bridge in the channel beneath the existing structure.

Both existing bridges are located in a wooded area surrounded by agricultural fields. Shale dipping to the north is exposed in a pit on the right side of the southwest end of Bridge 1. Mulberry Relief Creek is a 1200-foot branch of the Mulberry River that most likely only has significant flow during heavy rainfall. Sediment observed on both channel banks consists of sand, gravel, cobbles, and boulders.

Scour Observations

Scour under the southwest end of existing Bridge 1 (Mulberry River) was observed in the field. This is likely due to the sharp 90 degree turn in the river under the bridge in combination with the fact that the shale at this location is dipping towards the river. It appears concrete has been poured on the embankment under the bridge in a past attempt to resolve this scour. Pictures showing the scour and attempted remediation are included in Attachment C. Because the alignment of the new bridge end is similar to the alignment of the existing bridge end, continued scour of the bank should be anticipated.

Site Geology

The project alignment is located in the Atoka Formation of Pennsylvanian age (Pa). The Atoka Formation is a sequence of marine, mostly tan to gray silty sandstones and grayish-black shales. Some rare calcareous beds and siliceous shales are known. The unit locally contains discontinuous streaks of coal and coaly shale. Atoka shale was observed in outcrops on the southwest end of Bridge 1, slightly dipping towards the north. The project alignment lies within close proximity to the Mulberry Fault Zone and there is a mapped fault located several hundred feet north of the project alignment.

Several observations made in the field and in the rock cores show possible evidence of faulting within the project alignment. This includes the fact that the river takes several sharp 90 degree turns north of the existing bridges and also directly under Bridge 1. Slickensided vertical fractures were observed in the rock cores, which are often associated with faulting. The depth to rock observed in the core and in outcrops on the southwest end of the project alignment was

shallower than the rock encountered at the northeast end of the alignment. Shale encountered in Boring 1 at the southwest end of the alignment was approximately 0.5 feet below ground level. Shale encountered at the northeast end of the alignment, in borings 2 through 4, was between 24 and 30 feet below ground level.

Subsurface Conditions

Subsurface soil conditions observed above rock level represent a fining upwards sequence from boulder size sediments on top of the shale to sand to clayey sand near the surface. This is typical of bar type deposits found on the opposite banks from sharp bends in rivers. No obvious correlation between rock competence and depth was observed in the rock cores. To aid in visualizing the subsurface conditions, a Generalized Subsurface Profile is included in Attachment D.

Based on the results of Boring 1, the subsurface stratigraphy for Station 102+12 may be generalized as follows:

Stratum Ia: This surficial stratum extends to approximately 0.5-ft depth. The stratum consists of moist, very hard, brown sandy clay.

Stratum III: This basal stratum is below the Stratum I sandy clay and extends in excess of the 19-ft exploration depth. Stratum III consists of slightly weathered to unweathered / fresh, medium hard, gray shale.

Based on the results of Borings 2 through 4, the subsurface stratigraphy for Station 105+54 to Station 108+47 may be generalized as follows:

Stratum Ib: This surface stratum extends to approximately 0- to 7-ft depth. This stratum consists of moist, very loose to very dense, brown sand, sand with clay, to clayey sand.

Stratum II: Stratum II is below Stratum I soils and extends to approximately 24- to 30-ft depth. This stratum is comprised of moist, medium dense to very dense, brown sand with gravel to gravel with sand. The granular stratum contains variable amount of cobbles and boulders, particularly near the bottom of this stratum.

Stratum III: The basal stratum extends in excess of the 39- to 59-ft exploration depth of the borings. This stratum consists of slightly weathered to unweathered / fresh, medium hard, frequently to occasionally fractured shale.

Seismic Conditions

In light of the average subsurface conditions as revealed by the borings, a Seismic Site Class C (very Dense Soil and Soft Rock profile) is calculated for the project site. Utilizing the Seismic Site Class C and the approximate GPS coordinates of the project site, the following peak ground acceleration coefficient, short-period spectral acceleration coefficient, as well as long-period spectral acceleration coefficient, are determined. These seismic coefficients are summarized in Table 2 below. A Design Response Spectrum is presented in Attachment E.

Acceleration Coefficient	Value (g)
A _s (Site PGA)	0.069
S _{DS} (0.2 sec)	0.165
S _{D1} (1 Sec)	0.094

Table 2: Summary of Ground Motion Acceleration Response Coefficients

For the long-period spectral acceleration coefficient (S_{D1}) of 0.094, a Seismic Performance Zone 1 is considered applicable to the site.

Foundation Recommendations

<u>Steel H-Piling – Bents 1 and 5.</u> It is anticipated steel h-piling will be utilized to support the foundation loads at the end bents (Bents 1 and 5). Pile size to be used is not known at this time of writing. Steel h-piles should be driven to practical refusal and should penetrate through embankment fill, the overburden soils and the highly weathered to weathered shale, to bear in the <u>competent</u> slightly weathered to weathered shale.

Practical refusal is defined as a maximum penetration of 1.0 inch for 20 blows by a pile hammer. For the purpose of estimating pile length, a pile penetration of 1 ft into the competent rock is assumed. This estimated penetration is based on the results of the borings and our experience with similar foundation rock. The results of the borings indicate moderate to severe driving conditions are expected to be experienced. Consequently, rock points are recommended for all the h-piles driven to refusal.

A minimum pile penetration of 10 ft, measured below natural ground surface, is recommended. Greater pile length / penetration may be warranted by lateral resistance demand. Due to the depth of competent rock as revealed by the borings, preboring to achieve the minimum 10 ft of penetration will be required at Bent 1. In addition, preboring is also anticipated to be required for penetrating through the strata with gravel, cobbles, and / or boulders. Based on the results of the borings and the assumption of 1 ft penetration into the competent rock, the estimated pile tip elevation is summarized below in Table 3.

Bent No.	Boring Location	Estimated Tip Elevation
1	Sta. 102+12, 8 ft Rt. of CL	407 (10 ft below ground)
5	Sta. 108+47, 9 ft Lt. of CL	382

Table 3: Summary of Estimated Pile Tip Eleval	Table 3:	Summary	of	Estimated	Pile	Tip	Elevatio	n
---	----------	---------	----	-----------	------	-----	----------	---

The estimated pile tip elevation summarized in the table above is based on our evaluation of the rock cores retrieved from the borings. Actual subsurface conditions can vary from those encountered in the borings. As-constructed pile tip elevation can vary and must be field verified.

Nominal axial resistance of steel h piles driven to refusal in competent rock is governed by the structural capacity of the piles. Therefore the nominal resistance should be determined by the Structural Engineer utilizing applicable AASHTO LRFD design procedures. We are available to provide geotechnical inputs for structural evaluation of the nominal axial pile resistance. In light of the expected moderate to severe driving conditions, a resistance factor (φ_c) of 0.50 is recommended for calculating factored structural bearing resistance of h-piles. For steel piling driven to refusal in competent rock, long-term, post-construction settlement is expected to be negligible.

<u>Drilled Shafts – Bents 1, 2, 3 and 4.</u> Borings drilled at Bents 3 and 4 indicate competent rock was encountered at 24 to 30 ft below ground surface. Drilled shafts are suitable to be utilized to support the foundation loads of Bents 3 and 4. For uniformity in foundation design, compatibility of bridge movement, as well as reduced influence by scour, drilled shaft foundations are also planned at Bent 2 in the river channel. We also understand drilled shaft in lieu of steel h-piles may be considered at Bent 1 if competent rock is reasonably near the cap bottom elevation. Drilled shaft recommendations for these bents are provided below.

Drilled shafts should be founded a minimum of two (2) shaft diameters into the <u>competent</u> medium hard slightly weathered to fresh shale.

A maximum nominal bearing capacity (q_p) of 110 ksf is recommended for drilled shafts founded as recommended above. A resistance factor (ϕ_{stat}) of 0.50 is considered suitable for drilled shaft tip resistance. Due to several unpredictable factors, such as: the roughness of the shaft side wall after drilling and the rate of deterioration of the shale mass once exposed to the atmosphere, it is recommended that shaft side resistance be neglected. Applying the resistance factor to the nominal tip resistance results in a maximum factored tip resistance (q_R) of 55 ksf.

Based on the results of the borings, elevation of the competent medium hard slightly weathered shale to shale that is suitable for rock socket is summarized in Table 4 for Bents 1, 3, and 4.

Bent No.	Boring Location	Estimated <u>Competent</u> Rockline Elevation
1	Sta. 102+12, 8 ft Rt. of CL	417
3	Sta. 105+54, 4 ft Lt. of CL	375
4	Sta. 106+91, 8 ft Rt. of CL	383

Table 4: Summary of	Estimated	Competent	Rockline	Elevation
---------------------	-----------	-----------	----------	-----------

Actual competent rockline elevation at the drilled shaft locations can vary from those summarized in the above table and must be field verified. Depending on specific rock quality, deepening or shortening of shaft length can be warranted. Settlement of properly constructed drilled shafts founded into the competent rock should be negligible.

The boring originally planned at Bent 2 was not accessible due to high water and was not performed. Exact surface elevation and subsurface conditions are not known. Consequently, we recommend one test boring be drilled prior to the drilled shaft excavation. Test borings are also recommended in other bents (Bents 1, 3 and 4) utilizing drilled shaft foundations due to the potential presence of soft zones / pockets of highly weathered to weathered shale. Test borings should be 1-1/2 inches or larger and should extend to a minimum depth of 1.5 times of the shaft diameter below planned tip elevation.

D₅₀ for Scour Analysis

The particle size through which 50% of particles by weight passing, D₅₀, is summarized below in Table 5. Detailed particle size distribution curves used for D₅₀ determination are included in Attachment F.

Creek Name	Station	Sample Type	Location	Depth (FT)	Soil Description	D₅₀, mm
Mulberry River	104+70	Creek Bank	156' Lt. CL	NA	Medium to coarse sand w/ gravel	0.91
Mulberry Relief Creek	107+60	Creek Bank	150' Lt. CL	NA	Poorly graded fine sand	0.22

Table 5: Summary of D₅₀ for Scour Analysis

Jonathan A. Annable

Materials Engineer

JAA:yz:pit:pwc State Construction Engineer - Master File Copy CC: **District 4 Engineer** G.C. File

Attachment A

		FED. ROAD DIST. NO.	STATE	FED. AID PROJ. NO.	SHEET NO.	TOTAL SHEETS
		4	AR			
		JOB N	0.	BR7615		
				PLAN OF BORINGS	3	
	9 4	0 00 0		1000 0		
	40	T T T				V /
		15		بحركم كم	404	
				N	410	
				<u>}</u>	/ 110	
	A A A A A A A A A A A A A A A A A A A		لر	\/////////////////////////////////////		
			<i>\]</i>]	 جر گر [
کے	A ST REAL	, }}		، کہ <i>ا</i>		
تمر کم		لر ([المرج)				
5		, } }		$\setminus 7$		
F-		5	}			
	No. 13090	1 51	^ 410 [^]			
\sum		\sim) آهر	\sim		
۲ کر		5	(~		
			کم			
			7			
		ַ ויס דו	í t a			
		+7,91	LL. C			
		~		JL J		
}]]]]}		⁰⁺⁰		\searrow		
7 1 S S		OT V	\frown		\	
5					408	
{					408	
,						~
$n^{<}$					<	
					408	
EN S						
\checkmark				Å		
	£ (64		ŧ,	≫		
)		
	\int					
				\setminus		
				35		
			<u>, , , , , , , , , , , , , , , , , , , </u>		~ \	
		K S H)S 15	⊀.& શ્ર	APPRS. (\$ 7	5)	
	CRAWFORD & F	ANKL	IN (5	
	FED. All	D PRC)JE	СТ		
	JOB NO. BR7615			SHFFT	1/1	

ARKANSAS HWY. & TRANS. DEPARTMENT MATERIALS DIVISION - GEOTECHNICAL SEC.					BORI PAGE	NG N	ю. 1 1 с)F 1					
JOB N	0.		BR7615 Crawford & Franklin Counties		DATE:	:	<u> </u>	Ma	urch	2, 20	21		
JOB N	AME:	l	Mulberry River STR. & APPRS. (S)		TYPE OF DRILLING:								
			CO. RDS. 45 & 67		Ho	llow	Stem	Aug	er - l	Diam	ond	Core	
STAT	ION:		102+12		EQUI	PMEN	T:		Ac	ker 2	2094		
LOCA	TION:		8' Right of Construction Centerline										
LOGG	ED BY				HAMN	MER (CORREC	CTION	N FAC	CTOR:		N/A	
	PLEI		DEPTH: 19										
E	S	A											
P	Y M	M	DESCRIPTION OF MATERIAL	SOIL				T	FT.	WS		% T	% D
Т	B	P		GROUP	υ	Ŀ.		EIG	SCC	BLC	Ż	C	R Q
н	0				IT I	OIS		MF	PEF	OF	6-II	R	D
FT.		s	SURFACE ELEVATION: 417.1		PLA	N %	LIQ LIQ	DR	LBS	NO.	PER		
	.XX	\ge	∼Moist, Brown Sandy Clay							5			
			SHALE - Slightly Weathered, Medium Hard, Grav							15-	50		
										10))		
										(0)	100	98
10													
L _			SHALE - Unweathered, Medium Hard, Gray									100	100
<u> </u>												01	00
												94	90
20			Boring Terminated										
<u> </u>													
<u> </u>													
<u> </u>													
30													
- 00													
	1												
40													
┣ —													
<u> </u>													
\vdash –													
\square	1												
60													
\vdash –													
┣ _													
\vdash –													
KEM.	AKK	5:											
L													

ARKANSAS HWY. & TRANS. DEPARTMENT MATERIALS DIVISION - GEOTECHNICAL SEC.					BORI	NG N	10. 2	NF 1					
IOR N			BR7615 Crawford & Franklin Counties		DATE		<u> </u>	Febr	uarv	23 0	2021		
JOB N		1	Mulberry River STR & APPRS (S)		TVPE OF DRILLING:								
JODIN	ANE.		CO RDS 45 & 67		Ho	llow	Stem	0. Ano	er -]	Diam	ond	Core	
STAT	ION		105+54		FOLUE	MEN	т	Tug		vker 2	2094	Core	
	TION.		4' Left of Construction Centerline		LQUI	WILIN	1.		110		2074		
LOGG	ED BY	: C	oty Campbell		нами	AER (ORRE	TIO	N FAG	TOR		N/A	
COM	PLET	ION	DEPTH: 59										
D		S											
E	S	A											
Р	Y	Μ	DESCRIPTION OF MATERIAL	0.011				E	F.	WS		%	%
Т	B	Ρ	DEGORIT HON OF MATERIAE	GROUP				IGE	B	3LO	<u>_</u> :	C I	к О
Н	Ō	L			Ĕн	DIST	10 F	WE	PER	DF E	S-IN	R	Ď
FT	L	E			IMI	Ŭ	IQU	RY	BS I	0.0	ER (
	<u></u>	5	SURFACE ELEVATION: 405.5			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Д	Г	Z	E L		
<u> </u>			Moist. Verv Loose. Brown Clavev Sand			29				0-	1		
<u> </u>	$\sum \sum$												
<u> </u>	\mathbb{N}	\ge	Moist, Loose, Brown Sand with Clay			11				3	<u> </u>		
		\times	Moist, Medium Dense, Brown Sand with Some			8				5	4 ;		
10		\langle	_ Gravel			7				8-2	20		
L _	o ^{opi} 0 _c	$ \frown $	Moist Very Dense Brown Gravel with Sand							21-	3		
	800 8										00		
L _	86.0	\ge				16				9)		
	80 08									13-	25		
20	0000		Wet, Dense, Brown Gravel with Sand							1	n		
	0000	A								15-	20		
	800 800	\times								1:	2		
	é		Wet, Very Dense, Brown Sand with Gravel							55-	44		
30	80.00												
		Τ	SHALE - Slightly Weathered, Medium Hard,							6 (6	4 ")		
			SHALE - Unweathered, Medium Hard, Slightly								,	98	80
			\Dipping, Gray										
			SHALE - Unweathered, Medium Hard,									100	48
			Frequent Fractures, Slightly Dipping, Gray										
40												400	00
			SHALE - Unweathered, Medium Hard, Gray									100	86
$\vdash -$		+											
$\vdash -$			SHALE - Unweathered, Medium Hard,									100	84
			Occasional Fractures, Gray										
50													
┣─ ─			SHALE - Unweathered, Medium Hard, Gray									100	100
┣ —		+											
\vdash –			SHALE - Unweathered, Medium Hard with Soft									100	66
\vdash			Layers, Frequent Fractures, Gray										55
60			Boring Terminated		Ī								
\vdash –													
┣ —													
\vdash –													
┣ —													
70													
REM	ARKS	S: F	Rock competence does not increase with depth.										
L													

ARKANSAS HWY. & TRANS. DEPARTMENT						BORING NO. 3 PAGE 1 OF 1							
IOB N			PAGE I OF I DATE: Eebruary 8 and 9 2021										
JOB N	AME.		Mulberry River STR & APPRS (S)	TYPE OF DRILLING.									
300 1	TIVIL.	CO RDS 45 & 67	Hollow Stem Auger - Diamond Core										
STAT	ION:		106+91	FOURPMENT: Acker 2004									
LOCA	TION:		8' Right of Construction Centerline		LQUI								
LOGG	ED BY	7: B	randon McKinney		HAMI	MER (CORREC	CTION	N FAC	CTOR:		N/A	
COM	PLET	ION	DEPTH: 53.5										
D		S											
Е		Α							. :				
Р	M	Μ	DESCRIPTION OF MATERIAL	SOIL				Ħ	J.FI	SWC		% T	% R
T	B	P		GROUP	υ	Ë		E	ğ	BL(ż	C	Q
П	0				ITZ	OIS	E E	M	PEI	OF	6-II	R	D
FT.	L	S	SURFACE ELEVATION: 406.8		PLA	W %	LIQ LIQ	DRY	LBS	Ŋ.	PER		
		\succ				26				C			
<u> </u>	$\langle \rangle \rangle \rangle$	\boxtimes	Moist, Very Loose, Brown Sand with Clay			21				0-	2		
<u> </u>		\triangleright	Maint Loosa Brown Sand with Clay			19					0		
<u> </u>	///	\bigotimes	Moist, Very Loose, Brown Sand with Clay			14							
		\boxtimes	Moist, Loose, Brown Sand			12				1-	1		
10	0 00 00	\ge				6				3-	2		
<u> </u>	8.80 S		Moist, Dense, Brown Sand with Gravel*							1			
<u> </u>										2-	2		
<u> </u>	0.08									4-	4	38	3
	80		Sandatana Craval, Cabblaa, and Pauldara							5	10		
20			Salusione Gravel, Cobbles, and Boulders							18- 1	19 5		0
										(0	")	4	0
	$\omega \alpha$												
			SHALE - Slightly Weathered, Medium Hard,									88	22
<u> </u>			Occasional Fractures, Gray										
30			SHALE - Unweathered, Medium Hard with									100	0.4
<u> </u>			Occasional Soft Layers, Frequent Fractures,									100	64
<u> </u>													
<u> </u>												100	94
			SHALE - Unweathered Medium Hard Grav										
40			onnee onweathered, median haid, oray										~ .
												100	94
⊢ –			SHALE - Unweathered, Medium Hard,									98	91
<u> </u>			Occasional Fractures, Gray										
50			SHALE - Unweathered, Medium Hard.									100	00
			Frequent Fractures, Dark Gray									100	23
			Boring Terminated		-								
<u> </u>			boning reminated										
\vdash –													
60													
<u> </u>													
L _													
L _													
\vdash –													
70													
REM	ARKS	S: *	A water stratum was encountered at approximatel	y 12.7 fe	eet be	low	grour	ld le	vel.	Roc	k		
	competence does not increase with depth.												

ARKANSAS HWY. & TRANS. DEPARTMENT MATERIALS DIVISION - GEOTECHNICAL SEC.							BORING NO. 4 PAGE 1 OF 1						
JOB N	<u>О.</u>	DATE: February 2, 2021											
JOB N	AME:		Mulberry River STR. & APPRS. (S)		TYPE OF DRILLING:								
	Hollow Stem Auger - Diamond Core												
STAT	ION:		108+47		EQUI	PMEN	T:		Ac	ker 2	2094		
LOCA	TION:	9	9' Left of Construction Centerline										
LOGG	ED BY	(: A	ustin Dillman and Paul Campbell		HAMN	MER C	CORREC	CTION	I FAC	CTOR:		N/A	
СОМ	PLET	ION	(DEPTH: 39.3										
DE	s	S ∧											
P	Y	M						E	Ē	MS		%	%
Т	I M B	Ρ	DESCRIPTION OF MATERIAL	GROUP				IGH	B	SLO		T C	R O
Н	Ō				TIC	LSIC	E E	WE	PER	OFE	6-IN	R	Ď
FT	L	L S	SURFACE ELEVATION: 407.4		TAS	% W] MI	JRY	BS	Q.	ER		
	o.090	-				6			П	~	F		
<u> </u>	00.00												
	809 0 01 8					20/				5			
	800° 0	\bigtriangleup	Moist Medium Dense Brown Sand with Gravel			570				7-	9		
10													
-10	200	\ge				4%				9)		
										12	-8		
	8.00	\times				9%					5		
	° &	Moist, Dense, Brown Sand with Gravel								18-	15		
20	60 80 60 80					1.00/				2	1		
			Wet, Very Dense, Brown Sand with Gravel,			12%				(1	")		
			Cobbles, and Boulders										
		X	SHALE - Unweathered, Medium Hard, Gray							2	0		
			Occasional Fractures. Grav							(1	с ")	100	74
30			LIMESTONE - Unweathered, Moderately Hard,										
<u> </u>			Gray									94	78
<u> </u>			SHALE - Unweathered, Medium Hard,										
<u> </u>		Occasional Fractures, Gray										100	96
<u> </u>												100	00
40			Boring Terminated										
<u> </u>													
— —													
50													
	1												
60													
\square													
\vdash –													
70													
REM	ARKS	S: 1	9 hour water level reading was approximately 12.	1 feet be	elow g	rour	nd lev	el (B	GL).			
L													

_EGEND

1. Ground water elevations indicated on boring logs represent ground water elevations at date or time shown on boring log. Absence of water surface implies that no ground water data is available but does not necessarily mean that ground water will not be encountered at locations or within the vertical reaches of these borings.

Penetration in 60 Blows¤ Hard

- 2. Borings represent subsurface conditions at their respective locations for their respective depths. Variations in conditions between or adjacent to boring locations may be encountered.
- 3. Terms used for describing soils according to their texture or grain size distribution are in accordance with the Unified Soil Classification System.

Standard Penetration Test – Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6.0 inches to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and performing the test are recorded for each 6 inches of penetration on the drill log. The field "N" Value (N_f) can be obtained by $\frac{6}{2}$

adding the bottom two numbers for example: $\frac{6}{8-9} \Rightarrow 8+9 = 17blows / ft$. The "N" Value corrected to 60%

efficiency (N_{60}) can be obtained by multiplying N_f by the hammer correction factor published on the boring log.

Attachment B

Rock Core Unconfined Compression Test Summary

Project Number:BR7615Project Name:Mulberry River Str. & Apprs. (S)Date Tested:3/18/2020

Station	Location	Sample No.	Depth (ft.)	Diameter (in)	Height (in)	Total Load (lbs.)	Correction Factor	Stress (psi)	Remarks
106+91	8' RT CL	1	25.7	1.76	2.51	5,470		2249.53	
106+91	8' RT CL	2	33.0	1.76	4.43	2,370		974.66	
106+91	8' RT CL	3	33.5	1.76	3.55	9,850		4050.80	
106+91	8' RT CL	4	39.5	1.76	5.00	26,380		10848.75	
106+91	8' RT CL	5	48.7	1.76	3.88	260		106.92	
105+54	4' LT CL	6	35.0	1.76	2.72	7,640		3141.94	
105+54	4' LT CL	7	49.7	1.76	2.85	3,220		1324.22	
105+54	4' LT CL	8	56.8	1.76	0.00				Broke
105+54	4' LT CL	9	46.1	1.76	0.00	6,620		2722.47	
108+47	9' LT CL	10	28.6	1.76	3.55				Broke
102+12	8' RT CL	11	4.5	1.76	0.00				Broke

* Please note any broken samples, fractures or other characteristics of sample in Remarks.

Attachment C

Figure 1. Concrete poured on the end slope of the southwest end of Bridge 1 (Mulberry River).

Figure 2. Concrete poured on the end slope of the southwest end of Bridge 1 (Mulberry River).

Figure 3. Scour of the river bank observed on the left side of the southwest end of Bridge 1 (Mulberry River).

Attachment D

	420	-			103+00	104+00	105	+00	106	\$+00	107+	00	108+00		- 420
ELEVATION IN FEET											3				- 420
Pla	n View				Strata symbols		sand and gravel								-
1		2 •	3 ₽	4	sandy clay shale/siltstone clayey sand sand		sand, gravel, cobble boulders limestone/dolomite	s and			HORIZONTAL SCALE: 1"=(propo VERTICAL SCALE: 1"=15' M PRC Crawfo	GENERA SUBSURFACE DRAWN BY/APPR Julberry River STR DJECT NO. BR761 ord & Franklin Cou	LIZED PROFIL DVED BY & APPR 5 FIG nties	E DATE DI 3/23/2 S. (S) SURE N	RAWN 2021 UMBER

Attachment E

Title:		BR7	615			
Latitude:	35.530392					
Longitude:	-94.04055	Get USGS Data				
Site Class	С					
PGA:	0.058					
F _{PGA} :	1.2					
A _s :	0.069			DESIG	Ν	
S _S :	0.138	0.18				
F _A :	1.2	0.10				
S _{DS} :	0.165	0.16				
S ₁ :	0.055					
F _v :	1.7	0.14				
S _{D1} :	0.094					
S _{Dc} :	А	り し し し し し し し し し し				
T _s :	0.572	ATIO				
T ₀ :	0.114					
		O.08				
		TRAL				
		0.06				
		0)				

Attachment F

ARKANSAS DEPARTMENT OF TRANSPORTATION

ARDOT.gov IDriveArkansas.com Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

May 11, 2021

TO:

Mr. Rick Ellis, Bridge Engineer

SUBJECT: Job No. BR7615 Mulberry River Str. & Apprs. (S) Crawford & Franklin Counties County Road 67

Submitted herein are abutment slope recommendations for construction of the replacement bridge over Mulberry River and Mulberry Relief Creek on County Road 67 in Crawford and Franklin Counties. This report is supplemental to the foundation report dated March 24, 2021.

Based on plans provided by Bridge Division, the west abutment fill will be placed on top of the existing embankment and will have a 2H:1V end slope and 3H:1V side slopes. The east abutment slope will be placed in a new location on top of the existing gravel county road 67 and will have a similar slope geometry with a 2H:1V end slope and 3H:1V side slopes.

ARDOT Geotechnical section personnel performed stability analyses for deep-seated, global failure of bridge abutment slopes using the Rocscience computer program Slide 2018. Three different stability conditions were analyzed for the west and east abutment slopes: end of construction (short term), long term, and pseudo-static (seismic). The 2H:1V bridge end slopes were modeled and analyzed for both abutments, since these are the steepest and most critical. A pseudo-static seismic acceleration of 0.035g, corresponding to one-half of the peak ground acceleration (per NCHRP 611 and FHWA Publication HI-99-012) was utilized for the seismic design. The analysis conditions, recommended minimum factors of safety, and calculated minimum factors of safety are listed below in Tables 1 and 2 for the west and east abutment slopes, respectively. The modeled abutment slopes showing the minimum factor of safety, critical slip surface, and design soil properties for the west and east abutment slopes are included in Attachment A and B, respectively.

Analysis Condition	Recommended Minimum Factor of Safety	Calculated Minimum Factor of Safety
End of Construction (Short Term)	1.3	4.80
Long Term	1.4	1.62
Pseudo-Static (Seismic)	1.1	1.42

Table 1: West Abutment Stability Analysis Summary

Analysis Condition	Design Minimum Factor of Safety	Calculated Minimum Factor of Safety
End of Construction (Short Term)	1.3	2.33
Long Term	1.4	1.73
Pseudo-Static (Seismic)	1.1	1.58

Table 2: East Abutment Stability Analysis Summary

Based on the results of the stability analyses and their respective calculated factors of safety, the current slope geometry is acceptable for all conditions.

If you have any question concerning these recommendations, please contact the Geotechnical Section.

Jonathan A. Annable

Materials Engineer

JAA:yz:mlg

cc: State Construction Engineer - Master File Copy District 4 Engineer G.C. File

Attachment A

Attachment B

